50 research outputs found

    A Rate-Splitting Strategy for Max-Min Fair Multigroup Multicasting

    Full text link
    We consider the problem of transmit beamforming to multiple cochannel multicast groups. The conventional approach is to beamform a designated data stream to each group, while treating potential inter-group interference as noise at the receivers. In overloaded systems where the number of transmit antennas is insufficient to perform interference nulling, we show that inter-group interference dominates at high SNRs, leading to a saturating max-min fair performance. We propose a rather unconventional approach to cope with this issue based on the concept of Rate-Splitting (RS). In particular, part of the interference is broadcasted to all groups such that it is decoded and canceled before the designated beams are decoded. We show that the RS strategy achieves significant performance gains over the conventional multigroup multicast beamforming strategy.Comment: accepted to the 17th IEEE International workshop on Signal Processing advances in Wireless Communications (SPAWC 2016

    Rate-Splitting for Max-Min Fair Multigroup Multicast Beamforming in Overloaded Systems

    Get PDF
    In this paper, we consider the problem of achieving max-min fairness amongst multiple co-channel multicast groups through transmit beamforming. We explicitly focus on overloaded scenarios in which the number of transmitting antennas is insufficient to neutralize all inter-group interference. Such scenarios are becoming increasingly relevant in the light of growing low-latency content delivery demands, and also commonly appear in multibeam satellite systems. We derive performance limits of classical beamforming strategies using DoF analysis unveiling their limitations; for example, rates saturate in overloaded scenarios due to inter-group interference. To tackle interference, we propose a strategy based on degraded beamforming and successive interference cancellation. While the degraded strategy resolves the rate-saturation issue, this comes at a price of sacrificing all spatial multiplexing gains. This motivates the development of a unifying strategy that combines the benefits of the two previous strategies. We propose a beamforming strategy based on rate-splitting (RS) which divides the messages intended to each group into a degraded part and a designated part, and transmits a superposition of both degraded and designated beamformed streams. The superiority of the proposed strategy is demonstrated through DoF analysis. Finally, we solve the RS beamforming design problem and demonstrate significant performance gains through simulations

    Rate-Splitting for Multigroup Multicast Beamforming in Multicarrier Systems

    Full text link
    In this paper, we consider multigroup multicast transmissions with different types of service messages in an overloaded multicarrier system, where the number of transmitter antennas is insufficient to mitigate all inter-group interference. We show that employing a rate-splitting based multiuser beamforming approach enables a simultaneous delivery of the multiple service messages over the same time-frequency resources in a non-orthogonal fashion. Such an approach, taking into account transmission power constraints which are inevitable in practice, outperforms classic beamforming methods as well as current standardized multicast technologies, in terms of both spectrum efficiency and the flexibility of radio resource allocation.Comment: SPAWC 2018, 5 Pages, 2 fig

    Rate-Splitting for Max-Min Fair Multigroup Multicast Beamforming in Overloaded Systems

    Get PDF
    In this paper, we consider the problem of achieving max-min fairness amongst multiple co-channel multicast groups through transmit beamforming. We explicitly focus on overloaded scenarios in which the number of transmitting antennas is insufficient to neutralize all inter-group interference. Such scenarios are becoming increasingly relevant in the light of growing low-latency content delivery demands, and also commonly appear in multibeam satellite systems. We derive performance limits of classical beamforming strategies using DoF analysis unveiling their limitations; for example, rates saturate in overloaded scenarios due to inter-group interference. To tackle interference, we propose a strategy based on degraded beamforming and successive interference cancellation. While the degraded strategy resolves the rate-saturation issue, this comes at a price of sacrificing all spatial multiplexing gains. This motivates the development of a unifying strategy that combines the benefits of the two previous strategies. We propose a beamforming strategy based on rate-splitting (RS) which divides the messages intended to each group into a degraded part and a designated part, and transmits a superposition of both degraded and designated beamformed streams. The superiority of the proposed strategy is demonstrated through DoF analysis. Finally, we solve the RS beamforming design problem and demonstrate significant performance gains through simulations

    Rate-Splitting Multiple Access for Multibeam Satellite Communications

    Full text link
    This paper studies the beamforming design problem to achieve max-min fairness (MMF) in multibeam satellite communications. Contrary to the conventional linear precoding (NoRS) that relies on fully treating any residual interference as noise, we consider a novel multibeam multicast beamforming strategy based on Rate-Splitting Multiple Access (RSMA). RSMA relies on linearly precoded ratesplitting (RS) at the transmitter and Successive Interference Cancellation (SIC) at receivers to enable a flexible framework for non-orthogonal transmission and robust interbeam interference management. Aiming at achieving MMF among multiple co-channel multicast beams, a per-feed available power constrained optimization problem is formulated with different quality of channel state information at the transmitter (CSIT). The superiority of RS for multigroup multicast and multibeam satellite communication systems compared with conventional scheme (NoRS) is demonstrated via simulations

    Rate-splitting multiple access for non-terrestrial communication and sensing networks

    Get PDF
    Rate-splitting multiple access (RSMA) has emerged as a powerful and flexible non-orthogonal transmission, multiple access (MA) and interference management scheme for future wireless networks. This thesis is concerned with the application of RSMA to non-terrestrial communication and sensing networks. Various scenarios and algorithms are presented and evaluated. First, we investigate a novel multigroup/multibeam multicast beamforming strategy based on RSMA in both terrestrial multigroup multicast and multibeam satellite systems with imperfect channel state information at the transmitter (CSIT). The max-min fairness (MMF)-degree of freedom (DoF) of RSMA is derived and shown to provide gains compared with the conventional strategy. The MMF beamforming optimization problem is formulated and solved using the weighted minimum mean square error (WMMSE) algorithm. Physical layer design and link-level simulations are also investigated. RSMA is demonstrated to be very promising for multigroup multicast and multibeam satellite systems taking into account CSIT uncertainty and practical challenges in multibeam satellite systems. Next, we extend the scope of research from multibeam satellite systems to satellite- terrestrial integrated networks (STINs). Two RSMA-based STIN schemes are investigated, namely the coordinated scheme relying on CSI sharing and the co- operative scheme relying on CSI and data sharing. Joint beamforming algorithms are proposed based on the successive convex approximation (SCA) approach to optimize the beamforming to achieve MMF amongst all users. The effectiveness and robustness of the proposed RSMA schemes for STINs are demonstrated. Finally, we consider RSMA for a multi-antenna integrated sensing and communications (ISAC) system, which simultaneously serves multiple communication users and estimates the parameters of a moving target. Simulation results demonstrate that RSMA is beneficial to both terrestrial and multibeam satellite ISAC systems by evaluating the trade-off between communication MMF rate and sensing Cramer-Rao bound (CRB).Open Acces

    A Practical Max-Min Fair Resource Allocation Algorithm for Rate-Splitting Multiple Access

    Full text link
    This letter introduces a novel resource allocation algorithm for achieving max-min fairness (MMF) in a rate-splitting multiple access (RSMA) empowered multi-antenna broadcast channel. Specifically, we derive the closed-form solution for the optimal allocation of the common rate among users and the power between the common and private streams for a given practical low-complexity beamforming direction design. Numerical results show that the proposed algorithm achieves 90% of the MMF rate on average obtained by the conventional iterative optimization algorithm while only takes an average of 0.1 millisecond computational time, which is three orders of magnitude lower than the conventional algorithm. It is therefore a practical resource allocation algorithm for RSMA.Comment: 5 page
    corecore