718 research outputs found

    A Rate Control Model of MPEG-4 Encoder for Video Transmission over Wireless Sensor Network

    Get PDF
    Recently, multimedia application has a lot of attention in the research community, especially when transmitting video over IEEE 802.15.4 standard. This is due to the capability of providing low complexity with low cost, but still maintaining the quality of video in term of packet received. However, transmitting video over Wireless Sensor Network (WSN) posed a new research challenges with high bandwidth demand and energy constrained of sensor nodes. MPEG-4 video codec is one of the compression techniques that used to decrease the amount of bandwidth required to meet WSN environment. Therefore, video encoding is a useful tool for rate control to control the video bit rate and maintaining the video quality especially in real-time communication applications. Video bit rate is affected by quantization scale, frame rate, and Group of Picture (GOP) size. A rate control model called enhanced Video Motion Classification based (e-ViMoC) model is proposed in this paper to produce the desired bit rate that complies to the IEEE 802.15.4 standard, while at the same time preserving the video quality. The analysis has shown that, the video transmission using e-ViMoC rate control achieves enhancement in delivery ratio, energy consumption and video quality (PSNR) when compared to video transmission using uncompressed video

    Fuzzy Logic Control of Adaptive ARQ for Video Distribution over a Bluetooth Wireless Link

    Get PDF
    Bluetooth's default automatic repeat request (ARQ) scheme is not suited to video distribution resulting in missed display and decoded deadlines. Adaptive ARQ with active discard of expired packets from the send buffer is an alternative approach. However, even with the addition of cross-layer adaptation to picture-type packet importance, ARQ is not ideal in conditions of a deteriorating RF channel. The paper presents fuzzy logic control of ARQ, based on send buffer fullness and the head-of-line packet's deadline. The advantage of the fuzzy logic approach, which also scales its output according to picture type importance, is that the impact of delay can be directly introduced to the model, causing retransmissions to be reduced compared to all other schemes. The scheme considers both the delay constraints of the video stream and at the same time avoids send buffer overflow. Tests explore a variety of Bluetooth send buffer sizes and channel conditions. For adverse channel conditions and buffer size, the tests show an improvement of at least 4 dB in video quality compared to nonfuzzy schemes. The scheme can be applied to any codec with I-, P-, and (possibly) B-slices by inspection of packet headers without the need for encoder intervention.</jats:p

    Resource Allocation and Performance Analysis of Wireless Video Sensors

    Get PDF
    Digital Object Identifier 10.1109/TCSVT.2006.873154Wireless video sensor networks (WVSNs) have been envisioned for a wide range of important applications, including battlefield intelligence, security monitoring, emergency response, and environmental tracking. Compared to traditional communication system, the WVSN operates under a set of unique resource constraints, including limitations with respect to energy supply,on-board computational capability, and transmission bandwidth. The objective of this paper is to study the resource utilization behavior of a wireless video sensor and analyze its performance under the resource constraints. More specifically, we develop an analytic power-rate-distortion (P-R-D) model to characterize the inherent relationship between the power consumption of a video encoder and its rate-distortion performance. Based on the P-R-D analysis and a simplified model for wireless transmission power,we study the optimum power allocation between video encoding and wireless transmission and introduce a measure called achievable minimum distortion to quantify the distortion under a total power constraint. We consider two scenarios in wireless video sensing, small-delay wireless video monitoring and large-delay wireless video surveillance, and analyze the performance limit of the wireless video sensor in each scenario. The analysis and results obtained in this paper provide an important guideline for practical wireless video sensor design.This work was supported in part by the National Science Foundation under Grant DBI-0529082 and Grant DBI-0529012

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Power-Constrained Fuzzy Logic Control of Video Streaming over a Wireless Interconnect

    Get PDF
    Wireless communication of video, with Bluetooth as an example, represents a compromise between channel conditions, display and decode deadlines, and energy constraints. This paper proposes fuzzy logic control (FLC) of automatic repeat request (ARQ) as a way of reconciling these factors, with a 40% saving in power in the worst channel conditions from economizing on transmissions when channel errors occur. Whatever the channel conditions are, FLC is shown to outperform the default Bluetooth scheme and an alternative Bluetooth-adaptive ARQ scheme in terms of reduced packet loss and delay, as well as improved video quality

    Video Traffic Characteristics of Modern Encoding Standards: H.264/AVC with SVC and MVC Extensions and H.265/HEVC

    Get PDF
    abstract: Video encoding for multimedia services over communication networks has significantly advanced in recent years with the development of the highly efficient and flexible H.264/AVC video coding standard and its SVC extension. The emerging H.265/HEVC video coding standard as well as 3D video coding further advance video coding for multimedia communications. This paper first gives an overview of these new video coding standards and then examines their implications for multimedia communications by studying the traffic characteristics of long videos encoded with the new coding standards. We review video coding advances from MPEG-2 and MPEG-4 Part 2 to H.264/AVC and its SVC and MVC extensions as well as H.265/HEVC. For single-layer (nonscalable) video, we compare H.265/HEVC and H.264/AVC in terms of video traffic and statistical multiplexing characteristics. Our study is the first to examine the H.265/HEVC traffic variability for long videos. We also illustrate the video traffic characteristics and statistical multiplexing of scalable video encoded with the SVC extension of H.264/AVC as well as 3D video encoded with the MVC extension of H.264/AVC.View the article as published at https://www.hindawi.com/journals/tswj/2014/189481

    Adaptive sensing and optimal power allocation for wireless video sensors with sigma-delta imager

    Get PDF
    We consider optimal power allocation for wireless video sensors (WVSs), including the image sensor subsystem in the system analysis. By assigning a power-rate-distortion (P-R-D) characteristic for the image sensor, we build a comprehensive P-R-D optimization framework for WVSs. For a WVS node operating under a power budget, we propose power allocation among the image sensor, compression, and transmission modules, in order to minimize the distortion of the video reconstructed at the receiver. To demonstrate the proposed optimization method, we establish a P-R-D model for an image sensor based upon a pixel level sigma-delta ( ) image sensor design that allows investigation of the tradeoff between the bit depth of the captured images and spatio-temporal characteristics of the video sequence under the power constraint. The optimization results obtained in this setting confirm that including the image sensor in the system optimization procedure can improve the overall video quality under power constraint and prolong the lifetime of the WVSs. In particular, when the available power budget for a WVS node falls below a threshold, adaptive sensing becomes necessary to ensure that the node communicates useful information about the video content while meeting its power budget.Peer ReviewedPostprint (published version
    • …
    corecore