1,050 research outputs found

    On the possibility of automatic multisensor image registration

    Get PDF
    International audienceMultisensor image registration is needed in a large number of applications of remote sensing imagery. The accuracy achieved with usual methods (manual control points extraction, estimation of an analytical deformation model) is not satisfactory for many applications where a subpixel accuracy for each pixel of the image is needed (change detection or image fusion, for instance). Unfortunately, there are few works in the literature about the fine registration of multisensor images and even less about the extension of approaches similar to those based on fine correlation for the case of monomodal imagery. In this paper, we analyze the problem of the automatic multisensor image registration and we introduce similarity measures which can replace the correlation coefficient in a deformation map estimation scheme. We show an example where the deformation map between a radar image and an optical one is fully automatically estimated

    Local Visual Microphones: Improved Sound Extraction from Silent Video

    Full text link
    Sound waves cause small vibrations in nearby objects. A few techniques exist in the literature that can extract sound from video. In this paper we study local vibration patterns at different image locations. We show that different locations in the image vibrate differently. We carefully aggregate local vibrations and produce a sound quality that improves state-of-the-art. We show that local vibrations could have a time delay because sound waves take time to travel through the air. We use this phenomenon to estimate sound direction. We also present a novel algorithm that speeds up sound extraction by two to three orders of magnitude and reaches real-time performance in a 20KHz video.Comment: Accepted to BMVC 201

    Sub-pixel Registration In Computational Imaging And Applications To Enhancement Of Maxillofacial Ct Data

    Get PDF
    In computational imaging, data acquired by sampling the same scene or object at different times or from different orientations result in images in different coordinate systems. Registration is a crucial step in order to be able to compare, integrate and fuse the data obtained from different measurements. Tomography is the method of imaging a single plane or slice of an object. A Computed Tomography (CT) scan, also known as a CAT scan (Computed Axial Tomography scan), is a Helical Tomography, which traditionally produces a 2D image of the structures in a thin section of the body. It uses X-ray, which is ionizing radiation. Although the actual dose is typically low, repeated scans should be limited. In dentistry, implant dentistry in specific, there is a need for 3D visualization of internal anatomy. The internal visualization is mainly based on CT scanning technologies. The most important technological advancement which dramatically enhanced the clinician\u27s ability to diagnose, treat, and plan dental implants has been the CT scan. Advanced 3D modeling and visualization techniques permit highly refined and accurate assessment of the CT scan data. However, in addition to imperfections of the instrument and the imaging process, it is not uncommon to encounter other unwanted artifacts in the form of bright regions, flares and erroneous pixels due to dental bridges, metal braces, etc. Currently, removing and cleaning up the data from acquisition backscattering imperfections and unwanted artifacts is performed manually, which is as good as the experience level of the technician. On the other hand the process is error prone, since the editing process needs to be performed image by image. We address some of these issues by proposing novel registration methods and using stonecast models of patient\u27s dental imprint as reference ground truth data. Stone-cast models were originally used by dentists to make complete or partial dentures. The CT scan of such stone-cast models can be used to automatically guide the cleaning of patients\u27 CT scans from defects or unwanted artifacts, and also as an automatic segmentation system for the outliers of the CT scan data without use of stone-cast models. Segmented data is subsequently used to clean the data from artifacts using a new proposed 3D inpainting approach

    Computer vision and optimization methods applied to the measurements of in-plane deformations

    Get PDF
    fi=vertaisarvioitu|en=peerReviewed
    • …
    corecore