232 research outputs found

    Performance analysis of negative group delay network using MIMO technique

    Get PDF
    This study introduces comparative consequences that determine the bit error rate enhancements, resultant from adopting a proposed MIMO wireless model in this study. The antenna configurations for this model uses new small microstrip slotted patch antenna with multiple frequency bands at strategic operating frequencies of 2.4, 4.4, and 5.55 respectively. The S11 response of the proposed antenna for IEEE802.11 MIMO wireless network has been highly appropriate to be adopted with MIMO antenna system. The negative group delay (NGD) response is the most significant feature for projected MIMO antenna. The NGD stands for a counterintuitive singularity that interacts time advancement with wave propagation. These improvements are employed for increasing a reliability of instantly conveyed data streams, enhance the capacity of the wireless configuration and decrease the bit error rate (BER) of adopted wireless system. In addition to antenna scattering response, the enhancements have been analysed in term of BER for different MIMO topologies

    Quality of service differentiation for multimedia delivery in wireless LANs

    Get PDF
    Delivering multimedia content to heterogeneous devices over a variable networking environment while maintaining high quality levels involves many technical challenges. The research reported in this thesis presents a solution for Quality of Service (QoS)-based service differentiation when delivering multimedia content over the wireless LANs. This thesis has three major contributions outlined below: 1. A Model-based Bandwidth Estimation algorithm (MBE), which estimates the available bandwidth based on novel TCP and UDP throughput models over IEEE 802.11 WLANs. MBE has been modelled, implemented, and tested through simulations and real life testing. In comparison with other bandwidth estimation techniques, MBE shows better performance in terms of error rate, overhead, and loss. 2. An intelligent Prioritized Adaptive Scheme (iPAS), which provides QoS service differentiation for multimedia delivery in wireless networks. iPAS assigns dynamic priorities to various streams and determines their bandwidth share by employing a probabilistic approach-which makes use of stereotypes. The total bandwidth to be allocated is estimated using MBE. The priority level of individual stream is variable and dependent on stream-related characteristics and delivery QoS parameters. iPAS can be deployed seamlessly over the original IEEE 802.11 protocols and can be included in the IEEE 802.21 framework in order to optimize the control signal communication. iPAS has been modelled, implemented, and evaluated via simulations. The results demonstrate that iPAS achieves better performance than the equal channel access mechanism over IEEE 802.11 DCF and a service differentiation scheme on top of IEEE 802.11e EDCA, in terms of fairness, throughput, delay, loss, and estimated PSNR. Additionally, both objective and subjective video quality assessment have been performed using a prototype system. 3. A QoS-based Downlink/Uplink Fairness Scheme, which uses the stereotypes-based structure to balance the QoS parameters (i.e. throughput, delay, and loss) between downlink and uplink VoIP traffic. The proposed scheme has been modelled and tested through simulations. The results show that, in comparison with other downlink/uplink fairness-oriented solutions, the proposed scheme performs better in terms of VoIP capacity and fairness level between downlink and uplink traffic

    Review of Recent Trends

    Get PDF
    This work was partially supported by the European Regional Development Fund (FEDER), through the Regional Operational Programme of Centre (CENTRO 2020) of the Portugal 2020 framework, through projects SOCA (CENTRO-01-0145-FEDER-000010) and ORCIP (CENTRO-01-0145-FEDER-022141). Fernando P. Guiomar acknowledges a fellowship from “la Caixa” Foundation (ID100010434), code LCF/BQ/PR20/11770015. Houda Harkat acknowledges the financial support of the Programmatic Financing of the CTS R&D Unit (UIDP/00066/2020).MIMO-OFDM is a key technology and a strong candidate for 5G telecommunication systems. In the literature, there is no convenient survey study that rounds up all the necessary points to be investigated concerning such systems. The current deeper review paper inspects and interprets the state of the art and addresses several research axes related to MIMO-OFDM systems. Two topics have received special attention: MIMO waveforms and MIMO-OFDM channel estimation. The existing MIMO hardware and software innovations, in addition to the MIMO-OFDM equalization techniques, are discussed concisely. In the literature, only a few authors have discussed the MIMO channel estimation and modeling problems for a variety of MIMO systems. However, to the best of our knowledge, there has been until now no review paper specifically discussing the recent works concerning channel estimation and the equalization process for MIMO-OFDM systems. Hence, the current work focuses on analyzing the recently used algorithms in the field, which could be a rich reference for researchers. Moreover, some research perspectives are identified.publishersversionpublishe

    FracBot: Design of wireless underground sensor networks for mapping hydraulic fractures and determining reservoir parameters in unconventional systems

    Get PDF
    Wireless underground sensor networks (WUSNs) enable a wide variety of emerging applications that are not possible with current underground monitoring techniques, which require miniaturized wireless sensor systems for mapping hydraulic fractures, monitoring unconventional reservoirs and measuring other wellbore parameters. We call these devices FracBots (Fracture Robots), an extension of RFID (Radio Frequency IDentifcation) tags that realize WUSNs for mapping and characterization of hydraulic fractures in unconventional reservoirs. The objective of this thesis is to design fully integrated magnetic induction (MI)-based FracBots (WUSNs) that enable reliable and e fficient wireless communications in underground oil reservoirs for performing the in-situ monitoring of oil reservoirs. This is very crucial for determining the sweet spot of oil and natural gas reserves. To this end, we have contributed in four areas as follows: fi rst, we develop a novel cross-layer communication framework for MI-based FracBot networks in dynamically changing underground environments. The framework combines a joint selection of modulation, channel coding, power control and a geographic forwarding paradigm. Second, we develop a novel MI-based localization framework that exploits the unique properties of MI- eld to determine the locations of the randomly deployed FracBot nodes in oil reservoirs. Third, we develop an accurate energy framework of a linear FracBot network topology that generates feasible nodes' transmission rates and network topology while always guaranteeing su fficient energy. Then, we design, develop, and fabricate MI-based FracBot nodes. Finally, to validate the performance of our solutions in our produced prototype of FracBot nodes, we develop a physical MI-based WUSN testbed.Ph.D
    • …
    corecore