2,055 research outputs found

    Synchronization of spatiotemporal semiconductor lasers and its application in color image encryption

    Full text link
    Optical chaos is a topic of current research characterized by high-dimensional nonlinearity which is attributed to the delay-induced dynamics, high bandwidth and easy modular implementation of optical feedback. In light of these facts, which adds enough confusion and diffusion properties for secure communications, we explore the synchronization phenomena in spatiotemporal semiconductor laser systems. The novel system is used in a two-phase colored image encryption process. The high-dimensional chaotic attractor generated by the system produces a completely randomized chaotic time series, which is ideal in the secure encoding of messages. The scheme thus illustrated is a two-phase encryption method, which provides sufficiently high confusion and diffusion properties of chaotic cryptosystem employed with unique data sets of processed chaotic sequences. In this novel method of cryptography, the chaotic phase masks are represented as images using the chaotic sequences as the elements of the image. The scheme drastically permutes the positions of the picture elements. The next additional layer of security further alters the statistical information of the original image to a great extent along the three-color planes. The intermediate results during encryption demonstrate the infeasibility for an unauthorized user to decipher the cipher image. Exhaustive statistical tests conducted validate that the scheme is robust against noise and resistant to common attacks due to the double shield of encryption and the infinite dimensionality of the relevant system of partial differential equations.Comment: 20 pages, 11 figures; Article in press, Optics Communications (2011

    A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems

    Full text link
    Evidence of signatures associated with cryptographic modes of operation is established. Motivated by some analogies between cryptographic and dynamical systems, in particular with chaos theory, we propose an algorithm based on Lyapunov exponents of discrete dynamical systems to estimate the divergence among ciphertexts as the encryption algorithm is applied iteratively. The results allow to distinguish among six modes of operation, namely ECB, CBC, OFB, CFB, CTR and PCBC using DES, IDEA, TEA and XTEA block ciphers of 64 bits, as well as AES, RC6, Twofish, Seed, Serpent and Camellia block ciphers of 128 bits. Furthermore, the proposed methodology enables a classification of modes of operation of cryptographic systems according to their strength.Comment: 14 pages, 10 figure
    • …
    corecore