4,754 research outputs found

    Unbiased Learning to Rank with Unbiased Propensity Estimation

    Full text link
    Learning to rank with biased click data is a well-known challenge. A variety of methods has been explored to debias click data for learning to rank such as click models, result interleaving and, more recently, the unbiased learning-to-rank framework based on inverse propensity weighting. Despite their differences, most existing studies separate the estimation of click bias (namely the \textit{propensity model}) from the learning of ranking algorithms. To estimate click propensities, they either conduct online result randomization, which can negatively affect the user experience, or offline parameter estimation, which has special requirements for click data and is optimized for objectives (e.g. click likelihood) that are not directly related to the ranking performance of the system. In this work, we address those problems by unifying the learning of propensity models and ranking models. We find that the problem of estimating a propensity model from click data is a dual problem of unbiased learning to rank. Based on this observation, we propose a Dual Learning Algorithm (DLA) that jointly learns an unbiased ranker and an \textit{unbiased propensity model}. DLA is an automatic unbiased learning-to-rank framework as it directly learns unbiased ranking models from biased click data without any preprocessing. It can adapt to the change of bias distributions and is applicable to online learning. Our empirical experiments with synthetic and real-world data show that the models trained with DLA significantly outperformed the unbiased learning-to-rank algorithms based on result randomization and the models trained with relevance signals extracted by click models

    Controlling Fairness and Bias in Dynamic Learning-to-Rank

    Full text link
    Rankings are the primary interface through which many online platforms match users to items (e.g. news, products, music, video). In these two-sided markets, not only the users draw utility from the rankings, but the rankings also determine the utility (e.g. exposure, revenue) for the item providers (e.g. publishers, sellers, artists, studios). It has already been noted that myopically optimizing utility to the users, as done by virtually all learning-to-rank algorithms, can be unfair to the item providers. We, therefore, present a learning-to-rank approach for explicitly enforcing merit-based fairness guarantees to groups of items (e.g. articles by the same publisher, tracks by the same artist). In particular, we propose a learning algorithm that ensures notions of amortized group fairness, while simultaneously learning the ranking function from implicit feedback data. The algorithm takes the form of a controller that integrates unbiased estimators for both fairness and utility, dynamically adapting both as more data becomes available. In addition to its rigorous theoretical foundation and convergence guarantees, we find empirically that the algorithm is highly practical and robust.Comment: First two authors contributed equally. In Proceedings of the 43rd International ACM SIGIR Conference on Research and Development in Information Retrieval 202

    Differentiable Unbiased Online Learning to Rank

    Full text link
    Online Learning to Rank (OLTR) methods optimize rankers based on user interactions. State-of-the-art OLTR methods are built specifically for linear models. Their approaches do not extend well to non-linear models such as neural networks. We introduce an entirely novel approach to OLTR that constructs a weighted differentiable pairwise loss after each interaction: Pairwise Differentiable Gradient Descent (PDGD). PDGD breaks away from the traditional approach that relies on interleaving or multileaving and extensive sampling of models to estimate gradients. Instead, its gradient is based on inferring preferences between document pairs from user clicks and can optimize any differentiable model. We prove that the gradient of PDGD is unbiased w.r.t. user document pair preferences. Our experiments on the largest publicly available Learning to Rank (LTR) datasets show considerable and significant improvements under all levels of interaction noise. PDGD outperforms existing OLTR methods both in terms of learning speed as well as final convergence. Furthermore, unlike previous OLTR methods, PDGD also allows for non-linear models to be optimized effectively. Our results show that using a neural network leads to even better performance at convergence than a linear model. In summary, PDGD is an efficient and unbiased OLTR approach that provides a better user experience than previously possible.Comment: Conference on Information and Knowledge Management 201
    • …
    corecore