205 research outputs found

    Design and Control of Power Converters for High Power-Quality Interface with Utility and Aviation Grids

    Get PDF
    Power electronics as a subject integrating power devices, electric and electronic circuits, control, and thermal and mechanic design, requires not only knowledge and engineering insight for each subarea, but also understanding of interface issues when incorporating these different areas into high performance converter design.Addressing these fundamental questions, the dissertation studies design and control issues in three types of power converters applied in low-frequency high-power transmission, medium-frequency converter emulated grid, and high-frequency high-density aviation grid, respectively, with the focus on discovering, understanding, and mitigating interface issues to improve power quality and converter performance, and to reduce the noise emission.For hybrid ac/dc power transmission,• Analyze the interface transformer saturation issue between ac and dc power flow under line unbalances.• Proposed both passive transformer design and active hybrid-line-impedance-conditioner to suppress this issue.For transmission line emulator,• Propose general transmission line emulation schemes with extension capability.• Analyze and actively suppress the effects of sensing/sampling bias and PWM ripple on emulation considering interfaced grid impedance.• Analyze the stability issue caused by interaction of the emulator and its interfaced impedance. A criterion that determines the stability and impedance boundary of the emulator is proposed.For aircraft battery charger,• Investigate architectures for dual-input and dual-output battery charger, and a three-level integrated topology using GaN devices is proposed to achieve high density.• Identify and analyze the mechanisms and impacts of high switching frequency, di/dt, dv/dt on sensing and power quality control; mitigate solutions are proposed.• Model and compensate the distortion due to charging transition of device junction capacitances in three-level converters.• Find the previously overlooked device junction capacitance of the nonactive devices in three-level converters, and analyze the impacts on switching loss, device stress, and current distortion. A loss calculation method is proposed using the data from the conventional double pulse tester.• Establish fundamental knowledge on performance degradation of EMI filters. The impacts and mechanisms of both inductive and capacitive coupling on different filter structures are understood. Characterization methodology including measuring, modeling, and prediction of filter insertion loss is proposed. Mitigation solutions are proposed to reduce inter-component coupling and self-parasitics

    Control Theory in Engineering

    Get PDF
    The subject matter of this book ranges from new control design methods to control theory applications in electrical and mechanical engineering and computers. The book covers certain aspects of control theory, including new methodologies, techniques, and applications. It promotes control theory in practical applications of these engineering domains and shows the way to disseminate researchers’ contributions in the field. This project presents applications that improve the properties and performance of control systems in analysis and design using a higher technical level of scientific attainment. The authors have included worked examples and case studies resulting from their research in the field. Readers will benefit from new solutions and answers to questions related to the emerging realm of control theory in engineering applications and its implementation

    Noncontact Vital Signs Detection

    Get PDF
    Human health condition can be accessed by measurement of vital signs, i.e., respiratory rate (RR), heart rate (HR), blood oxygen level, temperature and blood pressure. Due to drawbacks of contact sensors in measurement, non-contact sensors such as imaging photoplethysmogram (IPPG) and Doppler radar system have been proposed for cardiorespiratory rates detection by researchers.The UWB pulse Doppler radars provide high resolution range-time-frequency information. It is bestowed with advantages of low transmitted power, through-wall capabilities, and high resolution in localization. However, the poor signal to noise ratio (SNR) makes it challenging for UWB radar systems to accurately detect the heartbeat of a subject. To solve the problem, phased-methods have been proposed to extract the phase variations in the reflected pulses modulated by human tiny thorax motions. Advance signal processing method, i.e., state space method, can not only be used to enhance SNR of human vital signs detection, but also enable the micro-Doppler trajectories extraction of walking subject from UWB radar data.Stepped Frequency Continuous Wave (SFCW) radar is an alternative technique useful to remotely monitor human subject activities. Compared with UWB pulse radar, it relieves the stress on requirement of high sampling rate analog-to-digital converter (ADC) and possesses higher signal-to-noise-ratio (SNR) in vital signs detection. However, conventional SFCW radar suffers from long data acquisition time to step over many frequencies. To solve this problem, multi-channel SFCW radar has been proposed to step through different frequency bandwidths simultaneously. Compressed sensing (CS) can further reduce the data acquisition time by randomly stepping through 20% of the original frequency steps.In this work, SFCW system is implemented with low cost, off-the-shelf surface mount components to make the radar sensors portable. Experimental results collected from both pulse and SFCW radar systems have been validated with commercial contact sensors and satisfactory results are shown

    Magnetic Tape Recording for the Eighties

    Get PDF
    The practical and theoretical aspects of state-of-the-art magnetic tape recording technology are reviewed. Topics covered include the following: (1) analog and digital magnetic tape recording, (2) tape and head wear, (3) wear testing, (4) magnetic tape certification, (5) care, handling, and management of magnetic tape, (6) cleaning, packing, and winding of magnetic tape, (7) tape reels, bands, and packaging, (8) coding techniques for high-density digital recording, and (9) tradeoffs of coding techniques

    MATLAB

    Get PDF
    A well-known statement says that the PID controller is the "bread and butter" of the control engineer. This is indeed true, from a scientific standpoint. However, nowadays, in the era of computer science, when the paper and pencil have been replaced by the keyboard and the display of computers, one may equally say that MATLAB is the "bread" in the above statement. MATLAB has became a de facto tool for the modern system engineer. This book is written for both engineering students, as well as for practicing engineers. The wide range of applications in which MATLAB is the working framework, shows that it is a powerful, comprehensive and easy-to-use environment for performing technical computations. The book includes various excellent applications in which MATLAB is employed: from pure algebraic computations to data acquisition in real-life experiments, from control strategies to image processing algorithms, from graphical user interface design for educational purposes to Simulink embedded systems

    Development of a portable time-domain system for diffuse optical tomography of the newborn infant brain

    Get PDF
    Conditions such as hypoxic-ischaemic encephalopathy (HIE) and perinatal arterial ischaemic stroke (PAIS) are causes of lifelong neurodisability in a few hundred infants born in the UK each year. Early diagnosis and treatment are key, but no effective bedside detection and monitoring technology is available. Non-invasive, near-infrared techniques have been explored for several decades, but progress has been inhibited by the lack of a portable technology, and intensity measurements, which are strongly sensitive to uncertain and variable coupling of light sources and detector to the scalp. A technique known as time domain diffuse optical tomography (TD-DOT) uses measurements of photon flight times between sources and detectors placed on the scalp. Mean flight time is largely insensitive to the coupling and variation in mean flight time can reveal spatial variation in blood volume and oxygenation in regions of brain sampled by the measurements. While the cost, size and high power consumption of such technology have hitherto prevented development of a portable imaging system, recent advances in silicon technology are enabling portable and low-power TD-DOT devices to be built. A prototype TD-DOT system is proposed and demonstrated, with the long-term aim to design a portable system based on independent modules, each supporting a time-of-flight detector and a pulsed source. The operation is demonstrated of components that can be integrated in a portable system: silicon photodetectors, integrated circuit-based signal conditioning and time detection -- built using a combination of off-the-shelf components and reconfigurable hardware, standard computer interfaces, and data acquisition and calibration software. The only external elements are a PC and a pulsed laser source. This thesis describes the design process, and results are reported on the performance of a 2-channel system with online histogram generation, used for phantom imaging. Possible future development of the hardware is also discussed

    ISOTOPE SHIFT SPECTROSCOPY OF ULTRACOLD STRONTIUM

    Get PDF
    We describe the design, construction, and performance of a laser system to probe the ultra-narrow (Γ/2π ≈ mHz) clock transition 1S0 → 3P0 in strontium. We present the first reported spectroscopy of this transition in two of the bosonic isotopes, 84Sr and 86Sr. Furthermore, we measure the complete set of isotope shifts between all four stable isotopes on the clock line and the narrow intercombination line 1S0 → 3P1, permitting a King plot analysis of the isotope shifts. Complications arising from the unambiguous determination of a line center in 87Sr 3P1 prevent us from making claims about the King linearity, but we provide a statistical boot- strap analysis of the isotope shifts 88−84Sr and 88−86Sr to compute a field shift ratio F698/F689 = 0.9979, with a 95% confidence interval [0.9952,1.0008]. The intercept term K698 − (F698/F689) K689 is similarly determined to be -2.0 GHz-amu, with a 95% confidence interval [−3.9, −0.3] GHz-amu. Finally, we describe the design of a next-generation apparatus that will enable improvements on the results described here, as well as other studies that involve coherent manipulation of strontium atoms on the clock line

    Scalable Control and Measurement of Gate-Defined Quantum Dot Systems

    Get PDF
    There is currently a worldwide effort towards the realisation of large-scale quantum computers that exploit quantum phenomena for information processing. While these computing systems could potentially redefine the technological landscape, harnessing quantum effects is challenging due to their inherently fragile nature and the experimentally demanding environments in which they arise. In order for quantum computation to be viable it is first necessary to demonstrate the operation of two-level quantum systems (qubits) which have long coherence times, can be quickly read out, and can be controlled with high fidelity. Focusing on these key requirements, this thesis presents four experiments towards scalable solid state quantum computing using gate-defined quantum dot devices based on gallium arsenide (GaAs) heterostructures. The first experiment investigates a phonon emission process that limits the charge coherence in GaAs and potentially complicates the microwave control of multi-qubit devices. We show that this microwave analogy to Raman spectroscopy can provide a means of detecting the unique phonon spectral density created by a nanoscale device. Experimental results are compared to a theoretical model based on a non-Markovian master equation and approaches to suppressing electron-phonon coupling are discussed. The second experiment demonstrates a technique involving in-situ gate electrodes coupled to lumped-element resonators to provide high-bandwidth dispersive read-out of the state of a double quantum dot. We characterise the charge sensitivity of this method in the few-electron regime and benchmark its performance against quantum point contact charge sensors. The third experiment implements a low-loss, chip-level frequency multiplexing scheme for the readout of scaled-up spin qubit arrays. Dispersive gate-sensing is realised in combination with charge detection based on two radio frequency quantum point contacts to perform multiplexed readout of a double quantum dot in the few-electron regime. Demonstration of a 10-channel multiplexing device is achieved and limitations in scaling spin qubit readout to large numbers using multiplexed channels discussed. The final experiment ties previously presented results together by realising a micro-architecture for controlling and reading out qubits during the execution of a quantum algorithm. The basic principles of this architecture are demonstrated via the manipulation of a semiconductor qubit using control pulses that are cryogenically routed using a high-electron mobility transistor switching matrix controlled by a field programmable gate array. Finally, several technical results are also presented including the development of printed circuit board solutions to allow the high-frequency measurement of nanoscale devices at cryogenic temperatures and the design of on-chip interconnects used to suppress electromagnetic crosstalk in high-density spin qubit device architectures
    • …
    corecore