9,045 research outputs found

    On similarity prediction and pairwise clustering

    Get PDF
    We consider the problem of clustering a finite set of items from pairwise similarity information. Unlike what is done in the literature on this subject, we do so in a passive learning setting, and with no specific constraints on the cluster shapes other than their size. We investigate the problem in different settings: i. an online setting, where we provide a tight characterization of the prediction complexity in the mistake bound model, and ii. a standard stochastic batch setting, where we give tight upper and lower bounds on the achievable generalization error. Prediction performance is measured both in terms of the ability to recover the similarity function encoding the hidden clustering and in terms of how well we classify each item within the set. The proposed algorithms are time efficient

    Randomized Dimensionality Reduction for k-means Clustering

    Full text link
    We study the topic of dimensionality reduction for kk-means clustering. Dimensionality reduction encompasses the union of two approaches: \emph{feature selection} and \emph{feature extraction}. A feature selection based algorithm for kk-means clustering selects a small subset of the input features and then applies kk-means clustering on the selected features. A feature extraction based algorithm for kk-means clustering constructs a small set of new artificial features and then applies kk-means clustering on the constructed features. Despite the significance of kk-means clustering as well as the wealth of heuristic methods addressing it, provably accurate feature selection methods for kk-means clustering are not known. On the other hand, two provably accurate feature extraction methods for kk-means clustering are known in the literature; one is based on random projections and the other is based on the singular value decomposition (SVD). This paper makes further progress towards a better understanding of dimensionality reduction for kk-means clustering. Namely, we present the first provably accurate feature selection method for kk-means clustering and, in addition, we present two feature extraction methods. The first feature extraction method is based on random projections and it improves upon the existing results in terms of time complexity and number of features needed to be extracted. The second feature extraction method is based on fast approximate SVD factorizations and it also improves upon the existing results in terms of time complexity. The proposed algorithms are randomized and provide constant-factor approximation guarantees with respect to the optimal kk-means objective value.Comment: IEEE Transactions on Information Theory, to appea
    • …
    corecore