1,938 research outputs found

    Are developmental disorders like cases of adult brain damage? Implications from connectionist modelling

    Get PDF
    It is often assumed that similar domain-specific behavioural impairments found in cases of adult brain damage and developmental disorders correspond to similar underlying causes, and can serve as convergent evidence for the modular structure of the normal adult cognitive system. We argue that this correspondence is contingent on an unsupported assumption that atypical development can produce selective deficits while the rest of the system develops normally (Residual Normality), and that this assumption tends to bias data collection in the field. Based on a review of connectionist models of acquired and developmental disorders in the domains of reading and past tense, as well as on new simulations, we explore the computational viability of Residual Normality and the potential role of development in producing behavioural deficits. Simulations demonstrate that damage to a developmental model can produce very different effects depending on whether it occurs prior to or following the training process. Because developmental disorders typically involve damage prior to learning, we conclude that the developmental process is a key component of the explanation of endstate impairments in such disorders. Further simulations demonstrate that in simple connectionist learning systems, the assumption of Residual Normality is undermined by processes of compensation or alteration elsewhere in the system. We outline the precise computational conditions required for Residual Normality to hold in development, and suggest that in many cases it is an unlikely hypothesis. We conclude that in developmental disorders, inferences from behavioural deficits to underlying structure crucially depend on developmental conditions, and that the process of ontogenetic development cannot be ignored in constructing models of developmental disorders

    Models of atypical development must also be models of normal development

    Get PDF
    Functional magnetic resonance imaging studies of developmental disorders and normal cognition that include children are becoming increasingly common and represent part of a newly expanding field of developmental cognitive neuroscience. These studies have illustrated the importance of the process of development in understanding brain mechanisms underlying cognition and including children ill the study of the etiology of developmental disorders

    Precis of neuroconstructivism: how the brain constructs cognition

    Get PDF
    Neuroconstructivism: How the Brain Constructs Cognition proposes a unifying framework for the study of cognitive development that brings together (1) constructivism (which views development as the progressive elaboration of increasingly complex structures), (2) cognitive neuroscience (which aims to understand the neural mechanisms underlying behavior), and (3) computational modeling (which proposes formal and explicit specifications of information processing). The guiding principle of our approach is context dependence, within and (in contrast to Marr [1982]) between levels of organization. We propose that three mechanisms guide the emergence of representations: competition, cooperation, and chronotopy; which themselves allow for two central processes: proactivity and progressive specialization. We suggest that the main outcome of development is partial representations, distributed across distinct functional circuits. This framework is derived by examining development at the level of single neurons, brain systems, and whole organisms. We use the terms encellment, embrainment, and embodiment to describe the higher-level contextual influences that act at each of these levels of organization. To illustrate these mechanisms in operation we provide case studies in early visual perception, infant habituation, phonological development, and object representations in infancy. Three further case studies are concerned with interactions between levels of explanation: social development, atypical development and within that, developmental dyslexia. We conclude that cognitive development arises from a dynamic, contextual change in embodied neural structures leading to partial representations across multiple brain regions and timescales, in response to proactively specified physical and social environment

    Scaffolding Cognition with Words

    Get PDF
    We describe a set of experiments investigating the role of natural language symbols in scaffolding situated action. Agents are evolved to respond appropriately to commands in order to perform simple tasks. We explore three different conditions, which show a significant advantage to the re-use of a public symbol system, through self-cueing leading to qualitative changes in performance. This is modelled by looping spoken output via environment back to heard input. We argue this work can be linked to, and sheds new light on, the account of self-directed speech advanced by the developmental psychologist Vygotsky in his model of the development of higher cognitive function

    The Mode of Computing

    Full text link
    The Turing Machine is the paradigmatic case of computing machines, but there are others, such as Artificial Neural Networks, Table Computing, Relational-Indeterminate Computing and diverse forms of analogical computing, each of which based on a particular underlying intuition of the phenomenon of computing. This variety can be captured in terms of system levels, re-interpreting and generalizing Newell's hierarchy, which includes the knowledge level at the top and the symbol level immediately below it. In this re-interpretation the knowledge level consists of human knowledge and the symbol level is generalized into a new level that here is called The Mode of Computing. Natural computing performed by the brains of humans and non-human animals with a developed enough neural system should be understood in terms of a hierarchy of system levels too. By analogy from standard computing machinery there must be a system level above the neural circuitry levels and directly below the knowledge level that is named here The mode of Natural Computing. A central question for Cognition is the characterization of this mode. The Mode of Computing provides a novel perspective on the phenomena of computing, interpreting, the representational and non-representational views of cognition, and consciousness.Comment: 35 pages, 8 figure

    Mind, Cognition, Semiosis: Ways to Cognitive Semiotics

    Get PDF
    What is meaning-making? How do new domains of meanings emerge in the course of child’s development? What is the role of consciousness in this process? What is the difference between making sense of pointing, pantomime and language utterances? Are great apes capable of meaning-making? What about dogs? Parrots? Can we, in any way, relate their functioning and behavior to a child’s? Are artificial systems capable of meaning-making? The above questions motivated the emergence of cognitive semiotics as a discipline devoted to theoretical and empirical studies of meaning-making processes. As a transdisciplinary approach to meaning and meaning-making, cognitive semiotics necessarily draws on a different disciplines: starting with philosophy of mind, via semiotics and linguistics, cognitive science(s), neuroanthropology, developmental and evolutionary psychology, comparative studies, and ending with robotics. The book presents extensively this discipline. It is a very eclectic story: highly abstract problems of philosophy of mind are discussed and, simultaneously, results of very specific experiments on picture recognition are presented. On the one hand, intentional acts involved in semiotic activity are elaborated; on the other, a computational system capable of a limited interpretation of excerpts from Carroll’s Through the Looking-Glass is described. Specifically, the two roads to cognitive semiotics are explored in the book: phenomenological-enactive path developed by the so-called Lund school and author’s own proposal: a functional-cognitivist path

    What working memory is for

    Get PDF
    corecore