8 research outputs found

    Construction of fuzzy radial basis function neural network model for diagnosing prostate cancer

    Get PDF
    In this paper, we propose a construction of fuzzy radial basis function neural network model for diagnosing prostate cancer. A fuzzy radial basis function neural network (fuzzy RBFNN) is a hybrid model of logical fuzzy and neural network. The fuzzy membership function of the fuzzy RBFNN model input is developed using the triangle function. The fuzzy C-means method is applied to estimate the center and the width parameters of the radial basis function. The weight estimation is performed by various ways to gain the most accurate model. A singular value decomposition (SVD) is exploited to address this process. As a comparison, we perform other ways including back propagation and global ridge regression. The study also promotes image preprocessing using high frequency emphasis filter (HFEF) and histogram equalization (HE) to enhance the quality of the prostate radiograph. The features of the textural image are extracted using the gray level co-occurrence matrix (GLCM) and gray level run length matrix (GLRLM). The experiment results of fuzzy RBFNN are compared to those of RBFNN model. Generally, the performances of fuzzy RBFNN surpass the RBFNN in all accuracy calculation. In addition, the fuzzy RBFNN-SVD demonstrates the most accurate model for prostate cancer diagnosis

    Implementing decision tree-based algorithms in medical diagnostic decision support systems

    Get PDF
    As a branch of healthcare, medical diagnosis can be defined as finding the disease based on the signs and symptoms of the patient. To this end, the required information is gathered from different sources like physical examination, medical history and general information of the patient. Development of smart classification models for medical diagnosis is of great interest amongst the researchers. This is mainly owing to the fact that the machine learning and data mining algorithms are capable of detecting the hidden trends between features of a database. Hence, classifying the medical datasets using smart techniques paves the way to design more efficient medical diagnostic decision support systems. Several databases have been provided in the literature to investigate different aspects of diseases. As an alternative to the available diagnosis tools/methods, this research involves machine learning algorithms called Classification and Regression Tree (CART), Random Forest (RF) and Extremely Randomized Trees or Extra Trees (ET) for the development of classification models that can be implemented in computer-aided diagnosis systems. As a decision tree (DT), CART is fast to create, and it applies to both the quantitative and qualitative data. For classification problems, RF and ET employ a number of weak learners like CART to develop models for classification tasks. We employed Wisconsin Breast Cancer Database (WBCD), Z-Alizadeh Sani dataset for coronary artery disease (CAD) and the databanks gathered in Ghaem Hospital’s dermatology clinic for the response of patients having common and/or plantar warts to the cryotherapy and/or immunotherapy methods. To classify the breast cancer type based on the WBCD, the RF and ET methods were employed. It was found that the developed RF and ET models forecast the WBCD type with 100% accuracy in all cases. To choose the proper treatment approach for warts as well as the CAD diagnosis, the CART methodology was employed. The findings of the error analysis revealed that the proposed CART models for the applications of interest attain the highest precision and no literature model can rival it. The outcome of this study supports the idea that methods like CART, RF and ET not only improve the diagnosis precision, but also reduce the time and expense needed to reach a diagnosis. However, since these strategies are highly sensitive to the quality and quantity of the introduced data, more extensive databases with a greater number of independent parameters might be required for further practical implications of the developed models

    Protein Superfamily Classification using Computational Intelligence Techniques

    Get PDF
    The problem of protein superfamily classification is a challenging research area in Bioinformatics and has its major application in drug discovery. If a newly discovered protein which is responsible for the cause of new disease gets correctly classified to its superfamily, then the task of the drug analyst becomes much easier. The analyst can perform molecular docking to find the correct relative orientation of ligand for the protein. The ligand database can be searched for all possible orientations and conformations of the protein belonging to that superfamily paired with the ligand. Thus, the search space is reduced enormously as the protein-ligand pair is searched for a particular protein superfamily. Therefore, correct classification of proteins becomes a very challenging task as it guides the analysts to discover appropriate drugs. In this thesis, Neural Networks (NN), Multiobjective Genetic Algorithm (MOGA),and Support Vector Machine (SVM) are applied to perform the classification task.Adaptive MultiObjective Genetic Algorithm (AMOGA), which is a variation of MOGA is implemented for the structure optimization of Radial Basis Function Network (RBFN). The modification to MOGA is done based on the two key controlling parameters such as probability of crossover and probability of mutation. These values are adaptively varied based upon the performance of the algorithm, i.e., based upon the percentage of the total population present in the best non-domination level. The problem of finding the number of hidden centers remains a critical issue for the design of RBFN. The most optimal RBF network with good generalization ability can be derived from the pareto optimal set. Therefore, every solution of the pareto optimal set gives information regarding the specific samples to be chosen as hidden centers as well as the update weight matrix connecting the hidden and output layer. Principal Component Analysis (PCA) has been used for dimension reduction and significant feature extraction from long feature vector of amino acid sequences.In two-stage approach for protein superfamily classification, feature extraction process is carried in the first stage and design of the classifier has been proposed in the second stage with an overall objective to maximize the performance accuracy of the classifier. In the feature extraction phase, Genetic Algorithm(GA) based wrapper approach is used to select few eigen vectors from the PCA space which are encoded as binary strings in the chromosome. Using PCA-NSGA-II (non-dominated sorting GA), the non-dominated solutions obtained from the pareto front solves the trade-off problem by compromising between the number of eigen vectors selected and the accuracy obtained by the classifier. In the second stage, Recursive Orthogonal Least Square Algorithm (ROLSA) is used for training RBFN. ROLSA selects the optimal number o

    Thickness estimation, automated classification and novelty detection in ultrasound images of the plantar fascia tissues

    Get PDF
    The plantar fascia (PF) tissue plays an important role in the movement and the stability of the foot during walking and running. Thus it is possible for the overuse and the associated medical problems to cause injuries and some severe common diseases. Ultrasound (US) imaging offers significant potential in diagnosis of PF injuries and monitoring treatments. Despite the advantages of US, the generated PF images are difficult to interpret during medical assessment. This is partly due to the size and position of the PF in relation to the adjacent tissues. This limits the use of US in clinical practice and therefore impacts on patient services for what is a common problem and a major cause of foot pain and discomfort. It is therefore a requirement to devise an automated system that allows better and easier interpretation of PF US images during diagnosis. This study is concerned with developing a computer-based system using a combination of medical image processing techniques whereby different PF US images can be visually improved, segmented, analysed and classified as normal or abnormal, so as to provide more information to the doctors and the clinical treatment department for early diagnosis and the detection of the PF associated medical problems. More specifically, this study is required to investigate the possibility of a proposed model for localizing and estimating the PF thickness a cross three different sections (rearfoot, midfoot and forefoot) using a supervised ANN segmentation technique. The segmentation method uses RBF artificial neural network module in order to classify small overlapping patches into PF and non-PF tissue. Feature selection technique was performed as a post-processing step for feature extraction to reduce the number of the extracted features. Then the trained RBF-ANN is used to segment the desired PF region. The PF thickness was calculated using two different methods: distance transformation and a proposed area-length calculation algorithm. Additionally, different machine learning approaches were investigated and applied to the segmented PF region in order to distinguish between symptomatic and asymptomatic PF subjects using the best normalized and selected feature set. This aims to facilitate the characterization and the classification of the PF area for the identification of patients with inferior heel pain at risk of plantar fasciitis. Finally, a novelty detection framework for detecting the symptomatic PF samples (with plantar fasciitis disorder) using only asymptomatic samples is proposed. This model implies the following: feature analysis, building a normality model by training the one-class SVDD classifier using only asymptomatic PF training datasets, and computing novelty scores using the trained SVDD classifier, training and testing asymptomatic datasets, and testing symptomatic datasets of the PF dataset. The performance evaluation results showed that the proposed approaches used in this study obtained favourable results compared to other methods reported in the literature

    A Radial Basis Function Neural Network (RBFNN) approach for structural classification of thyroid diseases

    No full text
    PubMedID: 18444358The thyroid is a gland that controls key functions of body. Diseases of the thyroid gland can adversely affect nearly every organ in human body. The correct diagnosis of a patient's thyroid disease clarifies the choice of drug treatment and also allows an accurate assessment of prognosis in many cases. This study investigates Multilayer Perceptron Neural Network (MLPNN) and Radial Basis Function Neural Network (RBFNN) for structural classification of thyroid diseases. A data set for 487 patients having thyroid disease is used to build, train and test the corresponding neural networks. The structural classification of this data set was performed by two expert physicians before the input variables and results were fed into the neural networks. Experimental results show that the predictions of both neural network models are very satisfying for learning data sets. Regarding the evaluation data, the trained RBFNN model outperforms the corresponding MLPNN model. This study demonstrates the strong utility of an artificial neural network model for structural classification of thyroid diseases. © 2007 Springer Science+Business Media, LLC
    corecore