17,300 research outputs found

    Spectroscopic Analysis in the Virtual Observatory Environment with SPLAT-VO

    Full text link
    SPLAT-VO is a powerful graphical tool for displaying, comparing, modifying and analyzing astronomical spectra, as well as searching and retrieving spectra from services around the world using Virtual Observatory (VO) protocols and services. The development of SPLAT-VO started in 1999, as part of the Starlink StarJava initiative, sometime before that of the VO, so initial support for the VO was necessarily added once VO standards and services became available. Further developments were supported by the Joint Astronomy Centre, Hawaii until 2009. Since end of 2011 development of SPLAT-VO has been continued by the German Astrophysical Virtual Observatory, and the Astronomical Institute of the Academy of Sciences of the Czech Republic. From this time several new features have been added, including support for the latest VO protocols, along with new visualization and spectra storing capabilities. This paper presents the history of SPLAT-VO, it's capabilities, recent additions and future plans, as well as a discussion on the motivations and lessons learned up to now.Comment: 15 pages, 6 figures, accepted for publication in Astronomy & Computin

    Research and Development Workstation Environment: the new class of Current Research Information Systems

    Get PDF
    Against the backdrop of the development of modern technologies in the field of scientific research the new class of Current Research Information Systems (CRIS) and related intelligent information technologies has arisen. It was called - Research and Development Workstation Environment (RDWE) - the comprehensive problem-oriented information systems for scientific research and development lifecycle support. The given paper describes design and development fundamentals of the RDWE class systems. The RDWE class system's generalized information model is represented in the article as a three-tuple composite web service that include: a set of atomic web services, each of them can be designed and developed as a microservice or a desktop application, that allows them to be used as an independent software separately; a set of functions, the functional filling-up of the Research and Development Workstation Environment; a subset of atomic web services that are required to implement function of composite web service. In accordance with the fundamental information model of the RDWE class the system for supporting research in the field of ontology engineering - the automated building of applied ontology in an arbitrary domain area, scientific and technical creativity - the automated preparation of application documents for patenting inventions in Ukraine was developed. It was called - Personal Research Information System. A distinctive feature of such systems is the possibility of their problematic orientation to various types of scientific activities by combining on a variety of functional services and adding new ones within the cloud integrated environment. The main results of our work are focused on enhancing the effectiveness of the scientist's research and development lifecycle in the arbitrary domain area.Comment: In English, 13 pages, 1 figure, 1 table, added references in Russian. Published. Prepared for special issue (UkrPROG 2018 conference) of the scientific journal "Problems of programming" (Founder: National Academy of Sciences of Ukraine, Institute of Software Systems of NAS Ukraine

    Processing Structured Hypermedia : A Matter of Style

    Get PDF
    With the introduction of the World Wide Web in the early nineties, hypermedia has become the uniform interface to the wide variety of information sources available over the Internet. The full potential of the Web, however, can only be realized by building on the strengths of its underlying research fields. This book describes the areas of hypertext, multimedia, electronic publishing and the World Wide Web and points out fundamental similarities and differences in approaches towards the processing of information. It gives an overview of the dominant models and tools developed in these fields and describes the key interrelationships and mutual incompatibilities. In addition to a formal specification of a selection of these models, the book discusses the impact of the models described on the software architectures that have been developed for processing hypermedia documents. Two example hypermedia architectures are described in more detail: the DejaVu object-oriented hypermedia framework, developed at the VU, and CWI's Berlage environment for time-based hypermedia document transformations

    Enhancing integrated environmental modelling by designing resource-oriented interfaces

    Get PDF
    Integrated environmental modelling is gaining momentum for addressing grand scientific challenges such as monitoring the environment for change detection and forecasting environmental conditions along with the consequences for society. Such challenges can only be addressed by a multi-disciplinary approach, in which socio-economic, geospatial, and environmental information becomes inter-connected. However, existing solutions cannot be seamlessly integrated and current interaction paradigms prevent mainstream usage of the existing technology. In particular, it is still difficult to access and join harmonized data and processing algorithms that are provided by different environmental information infrastructures. In this paper we take a novel approach for integrated environmental modelling based on the notion of inter-linked resources on the Web. We present design practices for creating resource-oriented interfaces, driven by an interaction protocol built on the combination of valid linkages to enhance resource integration, accompanied by associated recommendations for implementation. The suggested resource-oriented approach provides a solution to the problems identified above, but still requires intense prototyping and experimentation. We discuss the central open issues and present a roadmap for future research

    Automating SLA-Driven API Development with SLA4OAI

    Get PDF
    The OpenAPI Specification (OAS) is the de facto standard to describe RESTful APIs from a functional perspective. OAS has been a success due to its simple model and the wide ecosystem of tools supporting the SLA-Driven API development lifecycle. Unfortunately, the current OAS scope ignores crucial information for an API such as its Service Level Agreement (SLA). Therefore, in terms of description and management of non-functional information, the disadvantages of not having a standard include the vendor lock-in and prevent the ecosystem to grow and handle extra functional aspects. In this paper, we present SLA4OAI, pioneering in extending OAS not only allowing the specification of SLAs, but also supporting some stages of the SLA-Driven API lifecycle with an open-source ecosystem. Finally, we validate our proposal having modeled 5488 limitations in 148 plans of 35 real-world APIs and show an initial interest from the industry with 600 and 1900 downloads and installs of the SLA Instrumentation Library and the SLA Engine.Ministerio de Economía y Competitividad TIN2015-70560-RMinisterio de Ciencia, Innovación y Universidades RTI2018-101204-B-C21Ministerio de Educación, Cultura y Deporte FPU15/0298
    corecore