252 research outputs found

    Talk More Listen Less: Energy-Efficient Neighbor Discovery in Wireless Sensor Networks

    Full text link
    Neighbor discovery is a fundamental service for initialization and managing network dynamics in wireless sensor networks and mobile sensing applications. In this paper, we present a novel design principle named Talk More Listen Less (TMLL) to reduce idle-listening in neighbor discovery protocols by learning the fact that more beacons lead to fewer wakeups. We propose an extended neighbor discovery model for analyzing wakeup schedules in which beacons are not necessarily placed in the wakeup slots. Furthermore, we are the first to consider channel occupancy rate in discovery protocols by introducing a new metric to trade off among duty-cycle, latency and channel occupancy rate. Guided by the TMLL principle, we have designed Nihao, a family of energy-efficient asynchronous neighbor discovery protocols for symmetric and asymmetric cases. We compared Nihao with existing state of the art protocols via analysis and real-world testbed experiments. The result shows that Nihao significantly outperforms the others both in theory and practice.Comment: 9 pages, 14 figures, published in IEEE INFOCOM 201

    An artificial intelligence based quorum system for the improvement of the lifespan of sensor networks.

    Get PDF
    Artificial Intelligence-based Quorum systems are used to solve the energy crisis in real-time wireless sensor networks. They tend to improve the coverage, connectivity, latency, and lifespan of the networks where millions of sensor nodes need to be deployed in a smart grid system. The reality is that sensors may consume more power and reduce the lifetime of the network. This paper proposes a quorum-based grid system where the number of sensors in the quorum is increased without actually increasing quorums themselves, leading to improvements in throughput and latency by 14.23%. The proposed artificial intelligence scheme reduces the network latency due to an increase in time slots over conventional algorithms previously proposed. Secondly, energy consumption is reduced by weighted load balancing, improving the network’s actual lifespan. Our experimental results show that the coverage rate is increased on an average of 11% over the conventional Coverage Contribution Area (CCA), Partial Coverage with Learning Automata (PCLA), and Probabilistic Coverage Protocol (PCP) protocols respectively

    Enabling limited traffic scheduling in asynchronous ad hoc networks

    Get PDF
    We present work-in-progress developing a communication framework that addresses the communication challenges of the decentralized multihop wireless environment. The main contribution is the combination of a fully distributed, asynchronous power save mechanism with adaptation of the timing patterns defined by the power save mechanism to improve the energy and bandwidth efficiency of communication in multihop wireless networks. The possibility of leveraging this strategy to provide more complex forms of traffic management is explored

    MULTI-CHANNEL MAC PROTOCOL FOR ENERGY SAVING IN WIRELESS SENSOR NETWORKS

    Get PDF
    Wireless Sensor Network (WSN) is a self-organizing and distributed collection of small sensor nodes with limited energy are connected wirelessly to the sink, where the information is needed. The significant trait for any Wireless Sensor Network is power consumption since WSNs finds its most of the applications in unsafe, risky areas like Volcano eruption identification, Warfield monitoring, where human intervention is less or not possible at all. Hence designing a protocol with minimum energy consumption as a concern is an important challenge in increasing the lifetime of the sensor networks. Medium Access Control (MAC) Layer of WSN consumes much of the energy as it contains the radio component. Energy problems in MAC layer include collision, idle listening, and protocol overhead. Our Proposed MAC protocol provides solution for the problem of: collision by providing multiple channels; idle listening by providing sleeping mechanism for the nodes other than the active node; overhead by reducing the number of control messages. Avoiding collision results in the decrease in number of retransmissions which consumes more energy, avoiding idle listening problem will fairly increase the lifetime of the sensor node as well as the network’s lifetime and reducing overhead in turn consumes less energy

    A survey on subjecting electronic product code and non-ID objects to IP identification

    Full text link
    Over the last decade, both research on the Internet of Things (IoT) and real-world IoT applications have grown exponentially. The IoT provides us with smarter cities, intelligent homes, and generally more comfortable lives. However, the introduction of these devices has led to several new challenges that must be addressed. One of the critical challenges facing interacting with IoT devices is to address billions of devices (things) around the world, including computers, tablets, smartphones, wearable devices, sensors, and embedded computers, and so on. This article provides a survey on subjecting Electronic Product Code and non-ID objects to IP identification for IoT devices, including their advantages and disadvantages thereof. Different metrics are here proposed and used for evaluating these methods. In particular, the main methods are evaluated in terms of their: (i) computational overhead, (ii) scalability, (iii) adaptability, (iv) implementation cost, and (v) whether applicable to already ID-based objects and presented in tabular format. Finally, the article proves that this field of research will still be ongoing, but any new technique must favorably offer the mentioned five evaluative parameters.Comment: 112 references, 8 figures, 6 tables, Journal of Engineering Reports, Wiley, 2020 (Open Access

    A proposed energy efficient medium access control protocol for wireless sensor networks

    Get PDF
    Wireless Sensor Network (WSN) nodes are broadly used in various sectors nowadays. WSN nodes experience a lot of problems that impact on battery life for sensor node such as, overhearing, collision, hidden node, idle listening, schedule drifts, and high latency. Moreover, WSN nodes are strongly dependent on its limited battery power, and replenishing it again is difficult as nodes are organized in an ad-hoc manner. Energy consumption is the most vital factor to determine the life of a sensor network because sensor nodes are driven by low battery resources. An approach to conserve energy in WSN nodes is to carefully design its Medium Access Control (MAC) protocol. Several previous work has been carried out to mitigate many problems that impact on battery life for sensor node such as overhearing, collision, and hidden node. This dissertation attempts to design, a hybrid Energy-Efficient MAC (EEMAC) protocol to address the energy issues that are related to WSN nodes. This protocol aims to reduce idle listening times as well as lowering the latency time thus reducing the energy consumption. The proposed protocol has been developed and analysed using the ns-2 simulator. A mathematical model was used to verify and prove the efficiency of the proposed protocol. We have compared our proposed EE-MAC protocol with the existing contention-based IEEE 802.11 PSM protocol. The simulation results illustrate EE-MAC has achieved better energy conservation than the IEEE 802.11 PSM protocol

    EASND: Energy Adaptive Secure Neighbour Discovery Scheme for Wireless Sensor Networks

    Get PDF
    Wireless Sensor Network (WSN) is defined as a distributed system of networking, which is enabled with set of resource constrained sensors, thus attempt to providing a large set of capabilities and connectivity interferences. After deployment nodes in the network must automatically affected heterogeneity of framework and design framework steps, including obtaining knowledge of neighbor nodes for relaying information. The primary goal of the neighbor discovery process is reducing power consumption and enhancing the lifespan of sensor devices. The sensor devices incorporate with advanced multi-purpose protocols, and specifically communication models with the pre-eminent objective of WSN applications. This paper introduces the power and security aware neighbor discovery for WSNs in symmetric and asymmetric scenarios. We have used different of neighbor discovery protocols and security models to make the network as a realistic application dependent model. Finally, we conduct simulation to analyze the performance of the proposed EASND in terms of energy efficiency, collisions, and security. The node channel utilization is exceptionally elevated, and the energy consumption to the discovery of neighbor nodes will also be significantly minimized. Experimental results show that the proposed model has valid accomplishment
    • …
    corecore