18,726 research outputs found

    A Question Answering service for information retrieval in Cooper

    Get PDF
    Powerpoint presented at the 1st International Workshop on Collaborative Open Environments for Project-Centered Learning, September 2007, Crete, Greece

    The Most Influential Paper Gerard Salton Never Wrote

    Get PDF
    Gerard Salton is often credited with developing the vector space model (VSM) for information retrieval (IR). Citations to Salton give the impression that the VSM must have been articulated as an IR model sometime between 1970 and 1975. However, the VSM as it is understood today evolved over a longer time period than is usually acknowledged, and an articulation of the model and its assumptions did not appear in print until several years after those assumptions had been criticized and alternative models proposed. An often cited overview paper titled ???A Vector Space Model for Information Retrieval??? (alleged to have been published in 1975) does not exist, and citations to it represent a confusion of two 1975 articles, neither of which were overviews of the VSM as a model of information retrieval. Until the late 1970s, Salton did not present vector spaces as models of IR generally but rather as models of specifi c computations. Citations to the phantom paper refl ect an apparently widely held misconception that the operational features and explanatory devices now associated with the VSM must have been introduced at the same time it was fi rst proposed as an IR model.published or submitted for publicatio

    Negative Statements Considered Useful

    No full text
    Knowledge bases (KBs), pragmatic collections of knowledge about notable entities, are an important asset in applications such as search, question answering and dialogue. Rooted in a long tradition in knowledge representation, all popular KBs only store positive information, while they abstain from taking any stance towards statements not contained in them. In this paper, we make the case for explicitly stating interesting statements which are not true. Negative statements would be important to overcome current limitations of question answering, yet due to their potential abundance, any effort towards compiling them needs a tight coupling with ranking. We introduce two approaches towards compiling negative statements. (i) In peer-based statistical inferences, we compare entities with highly related entities in order to derive potential negative statements, which we then rank using supervised and unsupervised features. (ii) In query-log-based text extraction, we use a pattern-based approach for harvesting search engine query logs. Experimental results show that both approaches hold promising and complementary potential. Along with this paper, we publish the first datasets on interesting negative information, containing over 1.1M statements for 100K popular Wikidata entities

    Concept-based Interactive Query Expansion Support Tool (CIQUEST)

    Get PDF
    This report describes a three-year project (2000-03) undertaken in the Information Studies Department at The University of Sheffield and funded by Resource, The Council for Museums, Archives and Libraries. The overall aim of the research was to provide user support for query formulation and reformulation in searching large-scale textual resources including those of the World Wide Web. More specifically the objectives were: to investigate and evaluate methods for the automatic generation and organisation of concepts derived from retrieved document sets, based on statistical methods for term weighting; and to conduct user-based evaluations on the understanding, presentation and retrieval effectiveness of concept structures in selecting candidate terms for interactive query expansion. The TREC test collection formed the basis for the seven evaluative experiments conducted in the course of the project. These formed four distinct phases in the project plan. In the first phase, a series of experiments was conducted to investigate further techniques for concept derivation and hierarchical organisation and structure. The second phase was concerned with user-based validation of the concept structures. Results of phases 1 and 2 informed on the design of the test system and the user interface was developed in phase 3. The final phase entailed a user-based summative evaluation of the CiQuest system. The main findings demonstrate that concept hierarchies can effectively be generated from sets of retrieved documents and displayed to searchers in a meaningful way. The approach provides the searcher with an overview of the contents of the retrieved documents, which in turn facilitates the viewing of documents and selection of the most relevant ones. Concept hierarchies are a good source of terms for query expansion and can improve precision. The extraction of descriptive phrases as an alternative source of terms was also effective. With respect to presentation, cascading menus were easy to browse for selecting terms and for viewing documents. In conclusion the project dissemination programme and future work are outlined

    Applying science of learning in education: Infusing psychological science into the curriculum

    Get PDF
    The field of specialization known as the science of learning is not, in fact, one field. Science of learning is a term that serves as an umbrella for many lines of research, theory, and application. A term with an even wider reach is Learning Sciences (Sawyer, 2006). The present book represents a sliver, albeit a substantial one, of the scholarship on the science of learning and its application in educational settings (Science of Instruction, Mayer 2011). Although much, but not all, of what is presented in this book is focused on learning in college and university settings, teachers of all academic levels may find the recommendations made by chapter authors of service. The overarching theme of this book is on the interplay between the science of learning, the science of instruction, and the science of assessment (Mayer, 2011). The science of learning is a systematic and empirical approach to understanding how people learn. More formally, Mayer (2011) defined the science of learning as the “scientific study of how people learn” (p. 3). The science of instruction (Mayer 2011), informed in part by the science of learning, is also on display throughout the book. Mayer defined the science of instruction as the “scientific study of how to help people learn” (p. 3). Finally, the assessment of student learning (e.g., learning, remembering, transferring knowledge) during and after instruction helps us determine the effectiveness of our instructional methods. Mayer defined the science of assessment as the “scientific study of how to determine what people know” (p.3). Most of the research and applications presented in this book are completed within a science of learning framework. Researchers first conducted research to understand how people learn in certain controlled contexts (i.e., in the laboratory) and then they, or others, began to consider how these understandings could be applied in educational settings. Work on the cognitive load theory of learning, which is discussed in depth in several chapters of this book (e.g., Chew; Lee and Kalyuga; Mayer; Renkl), provides an excellent example that documents how science of learning has led to valuable work on the science of instruction. Most of the work described in this book is based on theory and research in cognitive psychology. We might have selected other topics (and, thus, other authors) that have their research base in behavior analysis, computational modeling and computer science, neuroscience, etc. We made the selections we did because the work of our authors ties together nicely and seemed to us to have direct applicability in academic settings

    Measurement in marketing

    Get PDF
    We distinguish three senses of the concept of measurement (measurement as the selection of observable indicators of theoretical concepts, measurement as the collection of data from respondents, and measurement as the formulation of measurement models linking observable indicators to latent factors representing the theoretical concepts), and we review important issues related to measurement in each of these senses. With regard to measurement in the first sense, we distinguish the steps of construct definition and item generation, and we review scale development efforts reported in three major marketing journals since 2000 to illustrate these steps and derive practical guidelines. With regard to measurement in the second sense, we look at the survey process from the respondent's perspective and discuss the goals that may guide participants' behavior during a survey, the cognitive resources that respondents devote to answering survey questions, and the problems that may occur at the various steps of the survey process. Finally, with regard to measurement in the third sense, we cover both reflective and formative measurement models, and we explain how researchers can assess the quality of measurement in both types of measurement models and how they can ascertain the comparability of measurements across different populations of respondents or conditions of measurement. We also provide a detailed empirical example of measurement analysis for reflective measurement models

    Special Libraries, April 1959

    Get PDF
    Volume 50, Issue 4https://scholarworks.sjsu.edu/sla_sl_1959/1003/thumbnail.jp
    • 

    corecore