3,363 research outputs found

    Querying a regulatory model for compliant building design audit

    Get PDF
    The ingredients for an effective automated audit of a building design include a BIM model containing the design information, an electronic regulatory knowledge model, and a practical method of processing these computerised representations. There have been numerous approaches to computer-aided compliance audit in the AEC/FM domain over the last four decades, but none has yet evolved into a practical solution. One reason is that they have all been isolated attempts that lack any form of standardisation. The current research project therefore focuses on using an open standard regulatory knowledge and BIM representations in conjunction with open standard executable compliant design workflows to automate the compliance audit process. This paper provides an overview of different approaches to access information from a regulatory model representation. The paper then describes the use of a purpose-built high-level domain specific query language to extract regulatory information as part of the effort to automate manual design procedures for compliance audit

    Using the ResearchEHR platform to facilitate the practical application of the EHR standards

    Full text link
    Possibly the most important requirement to support co-operative work among health professionals and institutions is the ability of sharing EHRs in a meaningful way, and it is widely acknowledged that standardization of data and concepts is a prerequisite to achieve semantic interoperability in any domain. Different international organizations are working on the definition of EHR architectures but the lack of tools that implement them hinders their broad adoption. In this paper we present ResearchEHR, a software platform whose objective is to facilitate the practical application of EHR standards as a way of reaching the desired semantic interoperability. This platform is not only suitable for developing new systems but also for increasing the standardization of existing ones. The work reported here describes how the platform allows for the edition, validation, and search of archetypes, converts legacy data into normalized, archetypes extracts, is able to generate applications from archetypes and finally, transforms archetypes and data extracts into other EHR standards. We also include in this paper how ResearchEHR has made possible the application of the CEN/ISO 13606 standard in a real environment and the lessons learnt with this experience. © 2011 Elsevier Inc..This work has been partially supported by the Spanish Ministry of Science and Innovation under Grants TIN2010-21388-C02-01 and TIN2010-21388-C02-02, and by the Health Institute Carlos in through the RETICS Combiomed, RD07/0067/2001. Our most sincere thanks to the Hospital of Fuenlabrada in Madrid, including its Medical Director Pablo Serrano together with Marta Terron and Luis Lechuga for their support and work during the development of the medications reconciliation project.Maldonado Segura, JA.; Martínez Costa, C.; Moner Cano, D.; Menárguez-Tortosa, M.; Boscá Tomás, D.; Miñarro Giménez, JA.; Fernández-Breis, JT.... (2012). Using the ResearchEHR platform to facilitate the practical application of the EHR standards. Journal of Biomedical Informatics. 45(4):746-762. doi:10.1016/j.jbi.2011.11.004S74676245

    Reasoning and Change Management in Modular Ontologies

    Get PDF
    The benefits of modular representations are well known from many areas of computer science. In this paper, we concentrate on the benefits of modular ontologies with respect to local containment of terminological reasoning. We define an architecture for modular ontologies that supports local reasoning by compiling implied subsumption relations. We further address the problem of guaranteeing the integrity of a modular ontology in the presence of local changes. We propose a strategy for analyzing changes and guiding the process of updating compiled information

    RegenBase: a knowledge base of spinal cord injury biology for translational research.

    Get PDF
    Spinal cord injury (SCI) research is a data-rich field that aims to identify the biological mechanisms resulting in loss of function and mobility after SCI, as well as develop therapies that promote recovery after injury. SCI experimental methods, data and domain knowledge are locked in the largely unstructured text of scientific publications, making large scale integration with existing bioinformatics resources and subsequent analysis infeasible. The lack of standard reporting for experiment variables and results also makes experiment replicability a significant challenge. To address these challenges, we have developed RegenBase, a knowledge base of SCI biology. RegenBase integrates curated literature-sourced facts and experimental details, raw assay data profiling the effect of compounds on enzyme activity and cell growth, and structured SCI domain knowledge in the form of the first ontology for SCI, using Semantic Web representation languages and frameworks. RegenBase uses consistent identifier schemes and data representations that enable automated linking among RegenBase statements and also to other biological databases and electronic resources. By querying RegenBase, we have identified novel biological hypotheses linking the effects of perturbagens to observed behavioral outcomes after SCI. RegenBase is publicly available for browsing, querying and download.Database URL:http://regenbase.org

    Semantic model-driven development of web service architectures.

    Get PDF
    Building service-based architectures has become a major area of interest since the advent of Web services. Modelling these architectures is a central activity. Model-driven development is a recent approach to developing software systems based on the idea of making models the central artefacts for design representation, analysis, and code generation. We propose an ontology-based engineering methodology for semantic model-driven composition and transformation of Web service architectures. Ontology technology as a logic-based knowledge representation and reasoning framework can provide answers to the needs of sharable and reusable semantic models and descriptions needed for service engineering. Based on modelling, composition and code generation techniques for service architectures, our approach provides a methodological framework for ontology-based semantic service architecture

    Detecting Compliance with Business Rules in Ontology-Based Process Modeling

    Get PDF
    Extending business processes with semantic annotations has gained recent attention. This comprises relating process elements to ontology elements in order to create a shared conceptual and terminological understanding. In business process modeling, processes may have to adhere to a multitude of rules. A common way to detect compliance automatedly is studying the artifact of the process model itself. However, if an ontology exists as an additional artifact, it may prove beneficial to exploit this structure for compliance detection, as it provides a rich specification of the business process. We therefore propose an approach that models a rules-layer ontop of an ontology. Said rules-layer is implemented by a logic program and can be used to reason about the compliance of an underlying ontology. Our approach allows ad-hoc access to external ontologies, other than similar approaches that are reliant on a redundant logical representation of process model elements

    SEMANTIC APPROACH TO SMART CONTRACT VERIFICATION

    Get PDF
    Vulnerabilities of smart contract are certainly one of the limiting factors for wider adoption of blockchain technology. Smart contracts written in Solidity language are considered due to common adoption of the Ethereum blockchain platform. Despite its popularity, the semantics of the language is not completely documented and relies on implicit mechanisms not publicly available and as such vulnerable to possible attacks. In addition, creating formal semantics for the higher-level language provides support to verification mechanisms. In this paper, a novel approach to smart contact verification is presented that uses ontologies in order to leverage semantic annotations of the smart contract source code combined with semantic representation of domain-specific aspects. The following aspects of smart contracts, apart from source code are taken into consideration for verification: business logic, domain knowledge, run-time state changes and expert knowledge about vulnerabilities. Main advantages of the proposed verification approach are platform independence and extendability
    corecore