23,726 research outputs found

    QUERY-SPECIFIC SUBTOPIC CLUSTERING IN RESPONSE TO BROAD QUERIES

    Get PDF
    Information Retrieval (IR) refers to obtaining valuable and relevant information from various sources in response to a specific information need. For the textual domain, the most common form of information sources is a collection of textual documents or text corpus. Depending on the scope of the information need, also referred to as the query, the relevant information can span a wide range of topical themes. Hence, the relevant information may often be scattered through multiple documents in the corpus, and each satisfies the information need to varying degrees. Traditional IR systems present the relevant set of documents in the form of a ranking where the rank of a particular document corresponds to its degree of relevance to the query. If the query is sufficiently specific, the set of relevant documents will be more or less about similar topics. However, they will be much more topically diverse when the query is vague or about a generalized topic, e.g., ``Computer science. In such cases, multiple documents may be of equal importance as each represents a specific facade of the broad topic of the query. Consider, for example, documents related to information retrieval and machine learning for the query ``Computer Science. In this case, the decision to rank documents from these two subtopics would be ambiguous. Instead, presenting the retrieved results as a cluster of documents where each cluster represents one subtopic would be more appropriate. Subtopic clustering of search results has been explored in the domain of Web-search, where users receive relevant clusters of search results in response to their query. This thesis explores query-specific subtopic clustering that incorporates queries into the clustering framework. We develop a query-specific similarity metric that governs a hierarchical clustering algorithm. The similarity metric is trained to predict whether a pair of relevant documents should also share the same subtopic cluster in the context of the query. Our empirical study shows that direct involvement of the query in the clustering model significantly improves the clustering performance over a state-of-the-art neural approach on two publicly available datasets. Further qualitative studies provide insights into the strengths and limitations of our proposed approach. In addition to query-specific similarity metrics, this thesis also explores a new supervised clustering paradigm that directly optimizes for a clustering metric. Being discrete functions, existing approaches for supervised clustering find it difficult to use a clustering metric for optimization. We propose a scalable training strategy for document embedding models that directly optimizes for the RAND index, a clustering quality metric. Our method outperforms a strong neural approach and other unsupervised baselines on two publicly available datasets. This suggests that optimizing directly for the clustering outcome indeed yields better document representations suitable for clustering. This thesis also studies the generalizability of our findings by incorporating the query-specific clustering approach and our clustering metric-based optimization technique into a single end-to-end supervised clustering model. Also, we extend our methods to different clustering algorithms to show that our approaches are not dependent on any specific clustering algorithm. Having such a generalized query-specific clustering model will help to revolutionize the way digital information is organized, archived, and presented to the user in a context-aware manner

    Rescue Tail Queries: Learning to Image Search Re-rank via Click-wise Multimodal Fusion

    Get PDF
    ABSTRACT Image search engines have achieved good performance for head (popular) queries by leveraging text information and user click data. However, there still remain a large number of tail (rare) queries with relatively unsatisfying search results, which are often overlooked in existing research. Image search for these tail queries therefore provides a grand challenge for research communities. Most existing re-ranking approaches, though effective for head queries, cannot be extended to tail. The assumption of these approaches that the re-ranked list should not go far away from the initial ranked list is not applicable to the tail queries. The challenge, thus, relies on how to leverage the possibly unsatisfying initial ranked results and the very limited click data to solve the search intent gap of tail queries. To deal with this challenge, we propose to mine relevant information from the very few click data by leveraging click-wise-based image pairs and query-dependent multimodal fusion. Specifically, we hypothesize that images with more clicks are more relevant to the given query than the ones with no or relatively less clicks and the effects of different visual modalities to re-rank images are query-dependent. We therefore propose a novel query-dependent learning to re-rank approach for tail queries, called "click-wise multimodal fusion." The approach can not only effectively expand training data by learning relevant information from the constructed click-wise-based image pairs, but also fully explore the effects of multiple visual modalities by adaptively predicting the query-dependent fusion weights. The experiments conducted on a real-world dataset with 100 tail queries show that our proposed approach can significantly improve initial search results by 10.88% and 9.12% in terms of NDCG@5 and NDCG@10, respectively, and outperform several existing re-ranking approaches. Categories and Subject Descriptors H.3.3 [Information Search and Retrieval]: Retrieval models General Terms Algorithms, Experimentation, Performance Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from [email protected]. . Existing commercial search engines achieve very limited image search performance for tail queries

    Query-dependent metric learning for adaptive, content-based image browsing and retrieval

    Get PDF

    Learning Visual Features from Snapshots for Web Search

    Full text link
    When applying learning to rank algorithms to Web search, a large number of features are usually designed to capture the relevance signals. Most of these features are computed based on the extracted textual elements, link analysis, and user logs. However, Web pages are not solely linked texts, but have structured layout organizing a large variety of elements in different styles. Such layout itself can convey useful visual information, indicating the relevance of a Web page. For example, the query-independent layout (i.e., raw page layout) can help identify the page quality, while the query-dependent layout (i.e., page rendered with matched query words) can further tell rich structural information (e.g., size, position and proximity) of the matching signals. However, such visual information of layout has been seldom utilized in Web search in the past. In this work, we propose to learn rich visual features automatically from the layout of Web pages (i.e., Web page snapshots) for relevance ranking. Both query-independent and query-dependent snapshots are considered as the new inputs. We then propose a novel visual perception model inspired by human's visual search behaviors on page viewing to extract the visual features. This model can be learned end-to-end together with traditional human-crafted features. We also show that such visual features can be efficiently acquired in the online setting with an extended inverted indexing scheme. Experiments on benchmark collections demonstrate that learning visual features from Web page snapshots can significantly improve the performance of relevance ranking in ad-hoc Web retrieval tasks.Comment: CIKM 201

    Modeling Temporal Evidence from External Collections

    Full text link
    Newsworthy events are broadcast through multiple mediums and prompt the crowds to produce comments on social media. In this paper, we propose to leverage on this behavioral dynamics to estimate the most relevant time periods for an event (i.e., query). Recent advances have shown how to improve the estimation of the temporal relevance of such topics. In this approach, we build on two major novelties. First, we mine temporal evidences from hundreds of external sources into topic-based external collections to improve the robustness of the detection of relevant time periods. Second, we propose a formal retrieval model that generalizes the use of the temporal dimension across different aspects of the retrieval process. In particular, we show that temporal evidence of external collections can be used to (i) infer a topic's temporal relevance, (ii) select the query expansion terms, and (iii) re-rank the final results for improved precision. Experiments with TREC Microblog collections show that the proposed time-aware retrieval model makes an effective and extensive use of the temporal dimension to improve search results over the most recent temporal models. Interestingly, we observe a strong correlation between precision and the temporal distribution of retrieved and relevant documents.Comment: To appear in WSDM 201
    • …
    corecore