758 research outputs found

    A Coordinate-Descent Algorithm for Tracking Solutions in Time-Varying Optimal Power Flows

    Full text link
    Consider a polynomial optimisation problem, whose instances vary continuously over time. We propose to use a coordinate-descent algorithm for solving such time-varying optimisation problems. In particular, we focus on relaxations of transmission-constrained problems in power systems. On the example of the alternating-current optimal power flows (ACOPF), we bound the difference between the current approximate optimal cost generated by our algorithm and the optimal cost for a relaxation using the most recent data from above by a function of the properties of the instance and the rate of change to the instance over time. We also bound the number of floating-point operations that need to be performed between two updates in order to guarantee the error is bounded from above by a given constant

    International Conference on Continuous Optimization (ICCOPT) 2019 Conference Book

    Get PDF
    The Sixth International Conference on Continuous Optimization took place on the campus of the Technical University of Berlin, August 3-8, 2019. The ICCOPT is a flagship conference of the Mathematical Optimization Society (MOS), organized every three years. ICCOPT 2019 was hosted by the Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Berlin. It included a Summer School and a Conference with a series of plenary and semi-plenary talks, organized and contributed sessions, and poster sessions. This book comprises the full conference program. It contains, in particular, the scientific program in survey style as well as with all details, and information on the social program, the venue, special meetings, and more

    Analysis of the supply chain design and planning issues: Models and algorithms

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Control Theory-Inspired Acceleration of the Gradient-Descent Method: Centralized and Distributed

    Get PDF
    Mathematical optimization problems are prevalent across various disciplines in science and engineering. Particularly in electrical engineering, convex and non-convex optimization problems are well-known in signal processing, estimation, control, and machine learning research. In many of these contemporary applications, the data points are dispersed over several sources. Restrictions such as industrial competition, administrative regulations, and user privacy have motivated significant research on distributed optimization algorithms for solving such data-driven modeling problems. The traditional gradient-descent method can solve optimization problems with differentiable cost functions. However, the speed of convergence of the gradient-descent method and its accelerated variants is highly influenced by the conditioning of the optimization problem being solved. Specifically, when the cost is ill-conditioned, these methods (i) require many iterations to converge and (ii) are highly unstable against process noise. In this dissertation, we propose novel optimization algorithms, inspired by control-theoretic tools, that can significantly attenuate the influence of the problem's conditioning. First, we consider solving the linear regression problem in a distributed server-agent network. We propose the Iteratively Pre-conditioned Gradient-Descent (IPG) algorithm to mitigate the deleterious impact of the data points' conditioning on the convergence rate. We show that the IPG algorithm has an improved rate of convergence in comparison to both the classical and the accelerated gradient-descent methods. We further study the robustness of IPG against system noise and extend the idea of iterative pre-conditioning to stochastic settings, where the server updates the estimate based on a randomly selected data point at every iteration. In the same distributed environment, we present theoretical results on the local convergence of IPG for solving convex optimization problems. Next, we consider solving a system of linear equations in peer-to-peer multi-agent networks and propose a decentralized pre-conditioning technique. The proposed algorithm converges linearly, with an improved convergence rate than the decentralized gradient-descent. Considering the practical scenario where the computations performed by the agents are corrupted, or a communication delay exists between them, we study the robustness guarantee of the proposed algorithm and a variant of it. We apply the proposed algorithm for solving decentralized state estimation problems. Further, we develop a generic framework for adaptive gradient methods that solve non-convex optimization problems. Here, we model the adaptive gradient methods in a state-space framework, which allows us to exploit control-theoretic methodology in analyzing Adam and its prominent variants. We then utilize the classical transfer function paradigm to propose new variants of a few existing adaptive gradient methods. Applications on benchmark machine learning tasks demonstrate our proposed algorithms' efficiency. Our findings suggest further exploration of the existing tools from control theory in complex machine learning problems. The dissertation is concluded by showing that the potential in the previously mentioned idea of IPG goes beyond solving generic optimization problems through the development of a novel distributed beamforming algorithm and a novel observer for nonlinear dynamical systems, where IPG's robustness serves as a foundation in our designs. The proposed IPG for distributed beamforming (IPG-DB) facilitates a rapid establishment of communication links with far-field targets while jamming potential adversaries without assuming any feedback from the receivers, subject to unknown multipath fading in realistic environments. The proposed IPG observer utilizes a non-symmetric pre-conditioner, like IPG, as an approximation of the observability mapping's inverse Jacobian such that it asymptotically replicates the Newton observer with an additional advantage of enhanced robustness against measurement noise. Empirical results are presented, demonstrating both of these methods' efficiency compared to the existing methodologies

    High performance implementation of MPC schemes for fast systems

    Get PDF
    In recent years, the number of applications of model predictive control (MPC) is rapidly increasing due to the better control performance that it provides in comparison to traditional control methods. However, the main limitation of MPC is the computational e ort required for the online solution of an optimization problem. This shortcoming restricts the use of MPC for real-time control of dynamic systems with high sampling rates. This thesis aims to overcome this limitation by implementing high-performance MPC solvers for real-time control of fast systems. Hence, one of the objectives of this work is to take the advantage of the particular mathematical structures that MPC schemes exhibit and use parallel computing to improve the computational e ciency. Firstly, this thesis focuses on implementing e cient parallel solvers for linear MPC (LMPC) problems, which are described by block-structured quadratic programming (QP) problems. Speci cally, three parallel solvers are implemented: a primal-dual interior-point method with Schur-complement decomposition, a quasi-Newton method for solving the dual problem, and the operator splitting method based on the alternating direction method of multipliers (ADMM). The implementation of all these solvers is based on C++. The software package Eigen is used to implement the linear algebra operations. The Open Message Passing Interface (Open MPI) library is used for the communication between processors. Four case-studies are presented to demonstrate the potential of the implementation. Hence, the implemented solvers have shown high performance for tackling large-scale LMPC problems by providing the solutions in computation times below milliseconds. Secondly, the thesis addresses the solution of nonlinear MPC (NMPC) problems, which are described by general optimal control problems (OCPs). More precisely, implementations are done for the combined multiple-shooting and collocation (CMSC) method using a parallelization scheme. The CMSC method transforms the OCP into a nonlinear optimization problem (NLP) and de nes a set of underlying sub-problems for computing the sensitivities and discretized state values within the NLP solver. These underlying sub-problems are decoupled on the variables and thus, are solved in parallel. For the implementation, the software package IPOPT is used to solve the resulting NLP problems. The parallel solution of the sub-problems is performed based on MPI and Eigen. The computational performance of the parallel CMSC solver is tested using case studies for both OCPs and NMPC showing very promising results. Finally, applications to autonomous navigation for the SUMMIT robot are presented. Specially, reference tracking and obstacle avoidance problems are addressed using an NMPC approach. Both simulation and experimental results are presented and compared to a previous work on the SUMMIT, showing a much better computational e ciency and control performance.Tesi

    Efficient Methods For Large-Scale Empirical Risk Minimization

    Get PDF
    Empirical risk minimization (ERM) problems express optimal classifiers as solutions of optimization problems in which the objective is the sum of a very large number of sample costs. An evident obstacle in using traditional descent algorithms for solving this class of problems is their prohibitive computational complexity when the number of component functions in the ERM problem is large. The main goal of this thesis is to study different approaches to solve these large-scale ERM problems. We begin by focusing on incremental and stochastic methods which split the training samples into smaller sets across time to lower the computation burden of traditional descent algorithms. We develop and analyze convergent stochastic variants of quasi-Newton methods which do not require computation of the objective Hessian and approximate the curvature using only gradient information. We show that the curvature approximation in stochastic quasi-Newton methods leads to faster convergence relative to first-order stochastic methods when the problem is ill-conditioned. We culminate with the introduction of an incremental method that exploits memory to achieve a superlinear convergence rate. This is the best known convergence rate for an incremental method. An alternative strategy for lowering the prohibitive cost of solving large-scale ERM problems is decentralized optimization whereby samples are separated not across time but across multiple nodes of a network. In this regime, the main contribution of this thesis is in incorporating second-order information of the aggregate risk corresponding to samples of all nodes in the network in a way that can be implemented in a distributed fashion. We also explore the separation of samples across both, time and space, to reduce the computational and communication cost for solving large-scale ERM problems. We study this path by introducing a decentralized stochastic method which incorporates the idea of stochastic averaging gradient leading to a low computational complexity method with a fast linear convergence rate. We then introduce a rethinking of ERM in which we consider not a partition of the training set as in the case of stochastic and distributed optimization, but a nested collection of subsets that we grow geometrically. The key insight is that the optimal argument associated with a training subset of a certain size is not that far from the optimal argument associated with a larger training subset. Based on this insight, we present adaptive sample size schemes which start with a small number of samples and solve the corresponding ERM problem to its statistical accuracy. The sample size is then grown geometrically and use the solution of the previous ERM as a warm start for the new ERM. Theoretical analyses show that the use of adaptive sample size methods reduces the overall computational cost of achieving the statistical accuracy of the whole dataset for a broad range of deterministic and stochastic first-order methods. We further show that if we couple the adaptive sample size scheme with Newton\u27s method, it is possible to consider subsequent doubling of the training set and perform a single Newton iteration in between. This is possible because of the interplay between the statistical accuracy and the quadratic convergence region of these problems and yields a method that is guaranteed to solve an ERM problem by performing just two passes over the dataset

    Probabilistic Framework for Sensor Management

    Get PDF
    A probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions
    corecore