538 research outputs found

    Multi-Technique Characterization of Superconducting Materials for Particle Accelerator Applications

    Get PDF
    We investigated the performance limitations of superconducting radio-frequency (SRF) cavities and materials using multiple experimental techniques. In particular, this study focuses on understanding the surface properties of nitrogen-doped Nb cavities and superconducting thin films with higher Tc such as Nb3Sn. The main goal of this work is to use different techniques to better understand each aspect of the complex loss mechanism in superconductors to further improve the already highly efficient SRF cavities. Nitrogen doping applied to a Nb SRF cavity significantly improves the quality factor Q0 compared to a conventional Nb cavity, at an expense of reduced maximum accelerating gradient. The early quench mechanism was analyzed by using temperature maps before and during the quenching. The temperature maps revealed insignificant heating before the quench, and we concluded that nitrogen doping reduces critical magnetic fields in local regions, leading to premature quenching. To understand the origin of the increasing Q0 with the rf field, the density of states (DOS) of cold spots from nitrogen-doped and standard cavities were measured and analyzed using scanning tunneling microscopy. The results suggested that nitrogen doping reduces the spatial inhomogeneity of superconducting properties and shrinks the metallic suboxide layers, which tunes the DOS in such a way as to produce the field-induced reduction in the surface resistance. To characterize SRF thin films, an experimental setup for measuring a coplanar waveguide (CPW) resonator was developed and tested. A surface impedance measurement of the Nb film showed good agreement with the BCS calculation. The preliminary results from measurements of Nb3Sn and NbTiN films are also presented here. The nonlinear Meissner effect was investigated in Nb3Sn film CPW resonators by measuring the resonant frequency as a function of a parallel magnetic field. Contrary to a conventional quadratic dependence of the penetration depth λ(B) on the applied magnetic field B, as expected in s-wave superconductors, nearly a linear increase of λ(B) with B was observed. It was concluded that this behavior of λ(B) is due to weakly linked grain boundaries on the polycrystalline Nb3Sn films, which can mimic the NLME expected in a clean d-wave superconductor

    Phase tunability in a conductor backed coplanar waveguide patch antenna

    Get PDF
    Traditionally beam steering in phase array antenna systems is achieved using tunable phase shifters or switched feed networks. Here, a tunable patch antenna element is suggested as a novel alternative to a combination of a radiating element and a phase shifter. A conductor backed coplanar waveguide patch antenna is chosen due to its suitability to mounted external tuning elements, using varactor diodes. Limited types of lumped tuning circuits, using varactor diodes, have been tested, though a lumped as well as distributed tuning is feasible in the chosen antenna configuration. Approximate analytical models for coplanar waveguide patch antennas with finite ground plane have been developed; in the literature, such approach is limited to infinite ground plane coplanar waveguide patch antenna only. Numerical results from approximate model were used as initial values in optimized simulations using JE31) software tool. Coplanar waveguide patch antennas were constructed; re-tuned to the desired frequency and tuning element were surface mounted. Experimental measurements for input return loss and phase variation as a function of frequency are carried out using various bias voltages applied in tuning circuits. Despite observed small losses and incremental changes in the resonance frequency, significant phase shifts were obtained within the desired bandwidth (low VSWR.) Alternative tuning with ferroelectric elements and distributed tuning is suggested as further research

    A Compact RF/Photonic Antenna using a Quantum Dot Mode Locked Laser as a Source

    Get PDF
    The research presented here is focused on achieving an active compact RF/Photonic antenna module based on a broadband antenna design integrated with a quantum dot mode-locked laser (QDMLL). A two-section QDMLL is used to produce pulsed microwaves signals to feed the radiating antenna. To realize the microwave signal radiation generated by the QDMLL, several possible MLL-integrated-antennas are proposed. The prototype integrated antenna is fully described, including the design, fabrication, and characterization of the antenna performance. Additionally, this work deals with the improvement of the radiation efficiency and functionality of the integrated module. An impedance matching network is designed to match the QDMLL to a bowtie slot antenna. The RF/Photonic integrated prototype is tested and analyzed over a wide frequency range. Finally a QDMLL-integrated-phased antenna array is designed to achieve beam steering. By manipulating the applied voltage bias of each QDMLL, one can achieve beam steering without the use of external RF phase shifters yielding a more compact design of an RF/photonic antenna on a chip. The 2-element integrated prototype is presented and discussed. Beam-steering is fully demonstrated via both simulation and measurements

    Design and characterisation of millimetre wave planar Gunn diodes and integrated circuits

    Get PDF
    Heterojunction planar Gunn devices were first demonstrated by Khalid et al in 2007. This new design of Gunn device, or transferred electron device, was based on the well-established material system of GaAs as the oscillation media. The design did not only breakthrough the frequency record of GaAs for conventional Gunn devices, but also has several advantages over conventional Gunn devices, such as the possibility of making multiple oscillators on a single chip and compatibility with monolithic integrated circuits. However, these devices faced the challenge of producing high enough RF power for practical applications and circuit technology for integration. This thesis describes systematic work on the design and characterisations of planar Gunn diodes and the associated millimetre-wave circuits for RF signal power enhancement. Focus has been put on improving the design of planar Gunn diodes and developing high performance integrated millimetre-wave circuits for combining multiple Gunn diodes. Improvement of device design has been proved to be one of the key methods to increase the signal power. By introducing additional δ-doping layers, electron concentration in the channel increases and better Gunn domain formation is achieved, therefore higher RF power and frequency are produced. Combining multiple channels in the vertical direction within devices is another effective way to increase the output signal power as well as DC-to-RF conversion efficiency. In addition, an alternative material system, i.e. In0.23Ga0.77As, has also been studied for this purpose. Planar passive components, such as resonators, couplers, low pass filters (LPFs), and power combiners with high performance over 100 GHz have been developed. These components can be smoothly integrated with planar Gunn diodes for compact planar Gunn oscillators, and therefore contribute to RF power enhancement. In addition, several new measurement techniques for characterising oscillators and passive devices have also been developed during this work and will be included in this thesis

    RF-MEMS Switches Designed for High-Performance Uniplanar Microwave and mm-Wave Circuits

    Get PDF
    Radio frequency microelectromechanical system (RF-MEMS) switches have demonstrated superior electrical performance (lower loss and higher isolation) compared to semiconductor-based devices to implement reconfigurable microwave and millimeter (mm)-wave circuits. In this chapter, electrostatically actuated RF-MEMS switch configurations that can be easily integrated in uniplanar circuits are presented. The design procedure and fabrication process of RF-MEMS switch topologies able to control the propagating modes of multimodal uniplanar structures (those based on a combination of coplanar waveguide (CPW), coplanar stripline (CPS), and slotline) will be described in detail. Generalized electrical (multimodal) and mechanical models will be presented and applied to the switch design and simulation. The switch-simulated results are compared to measurements, confirming the expected performances. Using an integrated RF-MEMS surface micromachining process, high-performance multimodal reconfigurable circuits, such as phase switches and filters, are developed with the proposed switch configurations. The design and optimization of these circuits are discussed and the simulated results compared to measurements

    Performance enhancement of G-band micromachined printed antennas for MMIC integration

    Get PDF
    The objective of the work of this thesis is to design, fabricate, and characterise high performance micromachined antennas with fixed and reconfigurable bandwidth. The developed integrated antennas are suitable for MMICs integration at millimetre wave frequencies (G-band) on MMICs technology substrates (i.e GaAs, Si, InP). This work is done through a review of the scientific literature on the subject, and the design, simulation, fabrication and experimental verification, of various suitable designs of antenna. The novel design of the antennas in this work is based on elevated antenna structures in which the radiator is physically micromachined above the substrate. The antenna design schemes offer a suitable method to integrate an antenna with other MMICs. Further, this method eliminates undesired substrate effects, which degrades the antenna performance drastically. Also in this work we have for the first time realized different micromachined antenna topologies with different novel feeding mechanisms - offering more degrees of freedom for antenna design and enhancing the antenna performance. Experimental and simulation results are provided to demonstrate the effectiveness of the proposed antenna designs and topologies in this work. A new approach for fabricating printed antennas is introduced in this work to fulfil the fabrication process requirements. It provides a new method for the fabrication of 3-D multilevel structures with variable heights, without etching the substrate. Further, the height of the elevated structures can be specified in the process and can vary by several microns, regardless of the substrate used. This can be used to further enhance the bandwidth and gain of the antenna - avoiding substrate thinning and via holes, and increasing the fabrication yield. Thus, the elevated antenna can meet different application requirements and can be utilized as a substrate independent solution. In this work we have introduced the concept of reconfigurable antennas at millimetre wave band. Also, we have investigated various aspects associated with lowering the pull-down voltage and overcoming the stiction problem of MEMS switches required for the proposed reconfigurable antennas. This was achieved by developing MEMS technology which can be integrated with MMICs fabrication process. Two novel reconfigurable elevated patch antenna topologies were designed to demonstrate the developed technology and their performances were discussed. The result we obtained from this work demonstrates the feasibility of MEMS reconfigurable printed antennas at G-band frequencies. This will open a new field in MMICs technology and increasing system integration capabilities and functionality. The devolved technology in this thesis could be utilized in many unique applications including short range high data rate communication systems and high-resolution passive and active millimetre-wave imaging

    Development of micromachined millimeter-wave modules for next-generation wireless transceiver front-ends

    Get PDF
    This thesis discusses the design, fabrication, integration and characterization of millimeter wave passive components using polymer-core-conductor surface micromachining technologies. Several antennas, including a W-band broadband micromachined monopole antenna on a lossy glass substrate, and a Ka-band elevated patch antenna, and a V-band micromachined horn antenna, are presented. All antennas have advantages such as a broad operation band and high efficiency. A low-loss broadband coupler and a high-Q cavity for millimeter-wave applications, using surface micromachining technologies is reported using the same technology. Several low-loss all-pole band-pass filters and transmission-zero filters are developed, respectively. Superior simulation and measurement results show that polymer-core-conductor surface micromachining is a powerful technology for the integration of high-performance cavity, coupler and filters. Integration of high performance millimeter-wave transceiver front-end is also presented for the first time. By elevating a cavity-filter-based duplexer and a horn antenna on top of the substrate and using air as the filler, the dielectric loss can be eliminated. A full-duplex transceiver front-end integrated with amplifiers are designed, fabricated, and comprehensively characterized to demonstrate advantages brought by this surface micromachining technology. It is a low loss and substrate-independent solution for millimeter-wave transceiver integration.Ph.D.Committee Chair: John Papapolymerou; Committee Chair: Manos Tentzeris; Committee Member: Gordon Stuber; Committee Member: John Cressler; Committee Member: John Z. Zhang; Committee Member: Joy Laska
    corecore