20,164 research outputs found

    A scalable parallel finite element framework for growing geometries. Application to metal additive manufacturing

    Get PDF
    This work introduces an innovative parallel, fully-distributed finite element framework for growing geometries and its application to metal additive manufacturing. It is well-known that virtual part design and qualification in additive manufacturing requires highly-accurate multiscale and multiphysics analyses. Only high performance computing tools are able to handle such complexity in time frames compatible with time-to-market. However, efficiency, without loss of accuracy, has rarely held the centre stage in the numerical community. Here, in contrast, the framework is designed to adequately exploit the resources of high-end distributed-memory machines. It is grounded on three building blocks: (1) Hierarchical adaptive mesh refinement with octree-based meshes; (2) a parallel strategy to model the growth of the geometry; (3) state-of-the-art parallel iterative linear solvers. Computational experiments consider the heat transfer analysis at the part scale of the printing process by powder-bed technologies. After verification against a 3D benchmark, a strong-scaling analysis assesses performance and identifies major sources of parallel overhead. A third numerical example examines the efficiency and robustness of (2) in a curved 3D shape. Unprecedented parallelism and scalability were achieved in this work. Hence, this framework contributes to take on higher complexity and/or accuracy, not only of part-scale simulations of metal or polymer additive manufacturing, but also in welding, sedimentation, atherosclerosis, or any other physical problem where the physical domain of interest grows in time

    Improvements on non-equilibrium and transport Green function techniques: the next-generation transiesta

    Get PDF
    We present novel methods implemented within the non-equilibrium Green function code (NEGF) transiesta based on density functional theory (DFT). Our flexible, next-generation DFT-NEGF code handles devices with one or multiple electrodes (Ne1N_e\ge1) with individual chemical potentials and electronic temperatures. We describe its novel methods for electrostatic gating, contour opti- mizations, and assertion of charge conservation, as well as the newly implemented algorithms for optimized and scalable matrix inversion, performance-critical pivoting, and hybrid parallellization. Additionally, a generic NEGF post-processing code (tbtrans/phtrans) for electron and phonon transport is presented with several novelties such as Hamiltonian interpolations, Ne1N_e\ge1 electrode capability, bond-currents, generalized interface for user-defined tight-binding transport, transmission projection using eigenstates of a projected Hamiltonian, and fast inversion algorithms for large-scale simulations easily exceeding 10610^6 atoms on workstation computers. The new features of both codes are demonstrated and bench-marked for relevant test systems.Comment: 24 pages, 19 figure

    Anomalous ordering in inhomogeneously strained materials

    Get PDF
    We study a continuous quasi-two-dimensional order-disorder phase transition that occurs in a simple model of a material that is inhomogeneously strained due to the presence of dislocation lines. Performing Monte Carlo simulations of different system sizes and using finite size scaling, we measure critical exponents describing the transition of beta=0.18\pm0.02, gamma=1.0\pm0.1, and alpha=0.10\pm0.02. Comparable exponents have been reported in a variety of physical systems. These systems undergo a range of different types of phase transitions, including structural transitions, exciton percolation, and magnetic ordering. In particular, similar exponents have been found to describe the development of magnetic order at the onset of the pseudogap transition in high-temperature superconductors. Their common universal critical exponents suggest that the essential physics of the transition in all of these physical systems is the same as in our model. We argue that the nature of the transition in our model is related to surface transitions, although our model has no free surface.Comment: 5 pages, 3 figure
    corecore