11 research outputs found

    A High-Order Imaging Algorithm for High-Resolution Space-Borne SAR Based on a Modified Equivalent Squint Range Model

    Get PDF
    Two challenges have been faced in signal processing of ultrahigh-resolution spaceborne synthetic aperture radar (SAR). The first challenge is constructing a precise range model, and the second one is to develop an efficient imaging algorithm since traditional algorithms fail to process ultrahigh-resolution spaceborne SAR data effectively. In this paper, a novel high-order imaging algorithm for high-resolution spaceborne SAR is presented. First, a modified equivalent squint range model (MESRM) is developed by introducing equivalent radar acceleration into the equivalent squint range model, and it is more suitable for high-resolution spaceborne SAR. The signal model based on the MESRM is also presented. Second, a novel high-order imaging algorithm is derived. The insufficient pulse-repetition frequency problem is solved by an improved subaperture method, and accurate focusing is achieved through an extended hybrid correlation algorithm. Simulations are performed to validate the presented algorithm

    Advanced high-order nonlinear chirp scaling algorithm for high-resolution wide-swath spaceborne SAR

    Get PDF
    Spaceborne Synthetic Aperture Radar (SAR) is a well-established and powerful imaging technology that can provide high-resolution images of the Earth’s surface on a global scale. For future SAR systems, one of the key capabilities is to acquire images with both high-resolution and wide-swath. In parallel to the evolution of SAR sensors, more precise range models, and effective imaging algorithms are required. Due to the significant azimuth-variance of the echo signal in High-Resolution Wide-Swath (HRWS) SAR, two challenges have been faced in conventional imaging algorithms. The first challenge is constructing a precise range model of the whole scene and the second one is to develop an effective imaging algorithm since existing ones fail to process high-resolution and wide azimuth swath SAR data effectively. In this paper, an advanced high-order nonlinear chirp scaling (A-HNLCS) algorithm for HRWS SAR is proposed. First, a novel second-order equivalent squint range model (SOESRM) is developed to describe the range history of the whole scene, by introducing a quadratic curve to fit the deviation of the azimuth FM rate. Second, a corresponding algorithm is derived, where the azimuth-variance of the echo signal is solved by azimuth equalizing processing and accurate focusing is achieved through a high-order nonlinear chirp scaling algorithm. As a result, the whole scene can be accurately focused through one single imaging processing. Simulations are provided to validate the proposed range model and imaging algorithm

    Generalized Processing for Pulsed Synthetic Aperture Radar

    Get PDF
    The Range-Doppler Algorithm (RDA) and the Chirp-Scaling Algorithm (CSA) process Synthetic Aperture Radar (SAR) data with approximations to ideal SAR processing. These approximations are invalid for data from systems with wide bandwidths, large bandwidths, and/or low center frequencies. While simple and efficient, these frequency-domain methods are thus limited by the SAR parameters. This paper explores these limits and proposes a generalized chirp-scaling approach for extending the utility of frequency-domain processing. We demonstrate how different order approximations of the SAR signal in the two-dimensional frequency domain affect image focusing for varying SAR parameters. From these results, a guideline is set forth which suggests the required order of approximation terms for proper focusing. A proposed generalized frequency-domain processing approach is derived. This method is an efficient arbitrary-order chirp-scaling algorithm that processes the data using the appropriate number of approximation terms. The new method is demonstrated using simulated data

    Squint mode GEO SAR imaging using bulk range walk correction on received signals

    Get PDF
    Geosynchronous synthetic aperture radar (GEO SAR) has the potential for conducting long-term observation of target zones, which is essential for remote sensing applications such as disaster monitoring and vegetation measurements. The squint imaging mode is crucial for long-term observation using GEO SAR. However, this type of SAR imaging is problematic because the squint mode introduces a nonzero range cell walk, which increases the prevalence of invalid data in echoes and intensifies the coupling between the azimuth and range. Therefore, this paper proposes a novel squint mode GEO SAR imaging method based on the correction of the bulk range walk of received signals. Adjusting the starting time of the receiving window significantly reduces the redundancy in echoes. Then, first-order filtering, range cell migration correction, range compression, partial dechirp, and azimuth compression are used to obtain the imaging result. Simulation results for the GEO SAR imaging ofWenchuan County in China demonstrate that the proposed algorithm can achieve a resolution of 5 m within a 30 Ă— 30 km swath over 48% of the orbital period

    Higher order nonlinear chirp scaling algorithm for medium Earth orbit synthetic aperture radar

    Get PDF
    Due to the larger orbital arc and longer synthetic aperture time in medium Earth orbit (MEO) synthetic aperture radar (SAR), it is difficult for conventional SAR imaging algorithms to achieve a good imaging result. An improved higher order nonlinear chirp scaling (NLCS) algorithm is presented for MEO SAR imaging. First, the point target spectrum of the modified equivalent squint range model-based signal is derived, where a concise expression is obtained by the method of series reversion. Second, the well-known NLCS algorithm is modified according to the new spectrum and an improved algorithm is developed. The range dependence of the two-dimensional point target reference spectrum is removed by improved CS processing, and accurate focusing is realized through range-matched filter and range-dependent azimuth-matched filter. Simulations are performed to validate the presented algorithm

    A Novel General Imaging Formation Algorithm for GNSS-Based Bistatic SAR.

    Get PDF
    Global Navigation Satellite System (GNSS)-based bistatic Synthetic Aperture Radar (SAR) recently plays a more and more significant role in remote sensing applications for its low-cost and real-time global coverage capability. In this paper, a general imaging formation algorithm was proposed for accurately and efficiently focusing GNSS-based bistatic SAR data, which avoids the interpolation processing in traditional back projection algorithms (BPAs). A two-dimensional point target spectrum model was firstly presented, and the bulk range cell migration correction (RCMC) was consequently derived for reducing range cell migration (RCM) and coarse focusing. As the bulk RCMC seriously changes the range history of the radar signal, a modified and much more efficient hybrid correlation operation was introduced for compensating residual phase errors. Simulation results were presented based on a general geometric topology with non-parallel trajectories and unequal velocities for both transmitter and receiver platforms, showing a satisfactory performance by the proposed method

    A Two-Dimensional Spectrum for Bistatic SAR Processing Using Series Reversion

    Full text link

    Motion Compensation for Near-Range Synthetic Aperture Radar Applications

    Get PDF
    The work focuses on the analysis of influences of motion errors on near-range SAR applications and design of specific motion measuring and compensation algorithms. First, a novel metric to determine the optimum antenna beamwidth is proposed. Then, a comprehensive investigation of influences of motion errors on the SAR image is provided. On this ground, new algorithms for motion measuring and compensation using low cost inertial measurement units (IMU) are developed and successfully demonstrated

    Frequency-modulated continuous-wave synthetic-aperture radar: improvements in signal processing

    Get PDF
    With the advance of solid state devices, frequency-modulated continuous-wave (FMCW) designs have recently been used in synthetic-aperture radar (SAR) to decrease cost, size, weight and power consumption, making it deployable on smaller mobile plat-forms, including small (< 25 kg) unmanned aerial vehicle(s) (UAV). To foster its mobile uses, several SAR capabilities were studied: moving target indication (MTI) for increased situational awareness, bistatic operation, e.g. in UAV formation flights, for increased range, and signal processing algorithms for faster real-time performance. Most off-the-shelf SAR systems for small mobile platforms are commercial proprie-tary and/or military (ITAR, International Trades in Arms Regulations) restricted. As such, it necessitated the design and build of a prototype FMCW SAR system at the early stage to serve as a research tool. This enabled unrestricted hardware and software modifica-tions and experimentation. A model to analyze the triangularly modulated (TM) linear frequency modulated (LFM) waveform as one signal was established and used to develop a MTI algorithm which is effective for slow moving targets detection. Experimental field data collected by the prototyped FMCW SAR was then used to validate and demonstrate the effectiveness of the proposed MTI method. A bistatic FMCW SAR model was next introduced: Bistatic configuration is a poten-tial technique to overcome the power leakage problem in monostatic FMCW SAR. By mounting the transmitter and receiver on spatially separate mobile (UAV) platforms in formation deployment, the operation range of a bistatic FMCW SAR can be significantly improved. The proposed approximation algorithm established a signal model for bistatic FMCW SAR by using the Fresnel approximation. This model allows the existing signal processing algorithms to be used in bistatic FMCW SAR image generation without sig-nificant modification simplifying bistatic FMCW SAR signal processing. The proposed range migration algorithm is a versatile and efficient FMCW SAR sig-nal processing algorithm which requires less memory and computational load than the traditional RMA. This imaging algorithm can be employed for real-time image genera-tion by the FMCW SAR system on mobile platforms. Simulation results verified the pro-posed spectral model and experimental data demonstrated the effectiveness of the modi-fied RMA
    corecore