4,275 research outputs found

    A Quantum-Statistical Approach Toward Robot Learning by Demonstration

    No full text
    Statistical machine learning approaches have been at the epicenter of the ongoing research work in the field of robot learning by demonstration over the past few years. One of the most successful methodologies used for this purpose is a Gaussian mixture regression (GMR). In this paper, we propose an extension of GMR-based learning by demonstration models to incorporate concepts from the field of quantum mechanics. Indeed, conventional GMR models are formulated under the notion that all the observed data points can be assigned to a distinct number of model states (mixture components). In this paper, we reformulate GMR models, introducing some quantum states constructed by superposing conventional GMR states by means of linear combinations. The so-obtained quantum statistics-inspired mixture regression algorithm is subsequently applied to obtain a novel robot learning by demonstration methodology, offering a significantly increased quality of regenerated trajectories for computational costs comparable with currently state-of-the-art trajectory-based robot learning by demonstration approaches. We experimentally demonstrate the efficacy of the proposed approach

    Online quantum mixture regression for trajectory learning by demonstration

    No full text
    In this work, we present the online Quantum Mixture Model (oQMM), which combines the merits of quantum mechanics and stochastic optimization. More specifically it allows for quantum effects on the mixture states, which in turn become a superposition of conventional mixture states. We propose an efficient stochastic online learning algorithm based on the online Expectation Maximization (EM), as well as a generation and decay scheme for model components. Our method is suitable for complex robotic applications, where data is abundant or where we wish to iteratively refine our model and conduct predictions during the course of learning. With a synthetic example, we show that the algorithm can achieve higher numerical stability. We also empirically demonstrate the efficacy of our method in well-known regression benchmark datasets. Under a trajectory Learning by Demonstration setting we employ a multi-shot learning application in joint angle space, where we observe higher quality of learning and reproduction. We compare against popular and well-established methods, widely adopted across the robotics community

    Learning shared control by demonstration for personalized wheelchair assistance

    Get PDF
    An emerging research problem in assistive robotics is the design of methodologies that allow robots to provide personalized assistance to users. For this purpose, we present a method to learn shared control policies from demonstrations offered by a human assistant. We train a Gaussian process (GP) regression model to continuously regulate the level of assistance between the user and the robot, given the user's previous and current actions and the state of the environment. The assistance policy is learned after only a single human demonstration, i.e. in one-shot. Our technique is evaluated in a one-of-a-kind experimental study, where the machine-learned shared control policy is compared to human assistance. Our analyses show that our technique is successful in emulating human shared control, by matching the location and amount of offered assistance on different trajectories. We observed that the effort requirement of the users were comparable between human-robot and human-human settings. Under the learned policy, the jerkiness of the user's joystick movements dropped significantly, despite a significant increase in the jerkiness of the robot assistant's commands. In terms of performance, even though the robotic assistance increased task completion time, the average distance to obstacles stayed in similar ranges to human assistance

    Robot Learning from Human Demonstration: Interpretation, Adaptation, and Interaction

    Get PDF
    Robot Learning from Demonstration (LfD) is a research area that focuses on how robots can learn new skills by observing how people perform various activities. As humans, we have a remarkable ability to imitate other human’s behaviors and adapt to new situations. Endowing robots with these critical capabilities is a significant but very challenging problem considering the complexity and variation of human activities in highly dynamic environments. This research focuses on how robots can learn new skills by interpreting human activities, adapting the learned skills to new situations, and naturally interacting with humans. This dissertation begins with a discussion of challenges in each of these three problems. A new unified representation approach is introduced to enable robots to simultaneously interpret the high-level semantic meanings and generalize the low-level trajectories of a broad range of human activities. An adaptive framework based on feature space decomposition is then presented for robots to not only reproduce skills, but also autonomously and efficiently adjust the learned skills to new environments that are significantly different from demonstrations. To achieve natural Human Robot Interaction (HRI), this dissertation presents a Recurrent Neural Network based deep perceptual control approach, which is capable of integrating multi-modal perception sequences with actions for robots to interact with humans in long-term tasks. Overall, by combining the above approaches, an autonomous system is created for robots to acquire important skills that can be applied to human-centered applications. Finally, this dissertation concludes with a discussion of future directions that could accelerate the upcoming technological revolution of robot learning from human demonstration
    corecore