2 research outputs found

    A Quantum Version of Schöning's Algorithm Applied to Quantum 2-SAT

    Get PDF
    We study a quantum algorithm that consists of a simple quantum Markov process, and we analyze its behavior on restricted versions of Quantum 2-SAT. We prove that the algorithm solves these decision problems with high probability for n qubits, L clauses, and promise gap c in time O(n2L2c-2). If the Hamiltonian is additionally polynomially gapped, our algorithm efficiently produces a state that has high overlap with the satisfying subspace. The Markov process we study is a quantum analogue of Schöning's probabilistic algorithm for k-SAT

    A parallel spatial quantum search algorithm applied to the 3-SAT problem

    Get PDF
    This work presents a quantum search algorithm to solve the 3-SAT problem. An improvement over one of the best known classical algorithms for this problem is proposed, replacing the local search with a quantum search algorithm. The performance of the improved algorithm is assessed by simulating it using parallel programming techniques with shared memory. The experimental analysis demonstrate that the parallel simulation of the algorithm takes advantage of the available computing resources to improve over the eficiency of the sequential version, thus allowing to perform realistic simulations in reduced execution times.Sociedad Argentina de Informática e Investigación Operativ
    corecore