1,406 research outputs found

    A particle swarm optimization based memetic algorithm for dynamic optimization problems

    Get PDF
    Copyright @ Springer Science + Business Media B.V. 2010.Recently, there has been an increasing concern from the evolutionary computation community on dynamic optimization problems since many real-world optimization problems are dynamic. This paper investigates a particle swarm optimization (PSO) based memetic algorithm that hybridizes PSO with a local search technique for dynamic optimization problems. Within the framework of the proposed algorithm, a local version of PSO with a ring-shape topology structure is used as the global search operator and a fuzzy cognition local search method is proposed as the local search technique. In addition, a self-organized random immigrants scheme is extended into our proposed algorithm in order to further enhance its exploration capacity for new peaks in the search space. Experimental study over the moving peaks benchmark problem shows that the proposed PSO-based memetic algorithm is robust and adaptable in dynamic environments.This work was supported by the National Nature Science Foundation of China (NSFC) under Grant No. 70431003 and Grant No. 70671020, the National Innovation Research Community Science Foundation of China under Grant No. 60521003, the National Support Plan of China under Grant No. 2006BAH02A09 and the Ministry of Education, science, and Technology in Korea through the Second-Phase of Brain Korea 21 Project in 2009, the Engineering and Physical Sciences Research Council (EPSRC) of UK under Grant EP/E060722/01 and the Hong Kong Polytechnic University Research Grants under Grant G-YH60

    Quantum-Inspired Particle Swarm Optimization for Feature Selection and Parameter Optimization in Evolving Spiking Neural Networks for Classification Tasks

    Get PDF
    Introduction: Particle Swarm Optimization (PSO) was introduced in 1995 by Russell Eberhart and James Kennedy (Eberhart & Kennedy, 1995). PSO is a biologically-inspired technique based around the study of collective behaviour in decentralized and self-organized animal society systems. The systems are typically made up from a population of candidates (particles) interacting with one another within their environment (swarm) to solve a given problem. Because of its efficiency and simplicity, PSO has been successfully applied as an optimizer in many applications such as function optimization, artificial neural network training, fuzzy system control. However, despite recent research and development, there is an opportunity to find the most effective methods for parameter optimization and feature selection tasks. This chapter deals with the problem of feature (variable) and parameter optimization for neural network models, utilising a proposed Quantum–inspired PSO (QiPSO) method. In this method the features of the model are represented probabilistically as a quantum bit (qubit) vector and the model parameter values as real numbers. The principles of quantum superposition and quantum probability are used to accelerate the search for an optimal set of features, that combined through co-evolution with a set of optimised parameter values, will result in a more accurate computational neural network model. The method has been applied to the problem of feature and parameter optimization in Evolving Spiking Neural Network (ESNN) for classification. A swarm of particles is used to find the most accurate classification model for a given classification task. The QiPSO will be integrated within ESNN where features and parameters are simultaneously and more efficiently optimized. A hybrid particle structure is required for the qubit and real number data types. In addition, an improved search strategy has been introduced to find the most relevant and eliminate the irrelevant features on a synthetic dataset. The method is tested on a benchmark classification problem. The proposed method results in the design of faster and more accurate neural network classification models than the ones optimised through the use of standard evolutionary optimization algorithms. This chapter is organized as follows. Section 2 introduces PSO with quantum information principles and an improved feature search strategy used later in the developed method. Section 3 is an overview of ESNN, while Section 4 gives details of the integrated structure and the experimental results. Finally, Section 5 concludes this chapter

    Biogeography-based learning particle swarm optimization

    Get PDF

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms
    corecore