74,480 research outputs found

    Machine learning for many-body physics: The case of the Anderson impurity model

    Get PDF
    Machine learning methods are applied to finding the Green's function of the Anderson impurity model, a basic model system of quantum many-body condensed-matter physics. Different methods of parametrizing the Green's function are investigated; a representation in terms of Legendre polynomials is found to be superior due to its limited number of coefficients and its applicability to state of the art methods of solution. The dependence of the errors on the size of the training set is determined. The results indicate that a machine learning approach to dynamical mean-field theory may be feasible.Comment: 18 pages, 11 figures. Sections II. A and B have been modified and an appendix was adde

    The Expressivity of Classical and Quantum Neural Networks on Entanglement Entropy

    Full text link
    Analytically continuing the von Neumann entropy from R\'enyi entropies is a challenging task in quantum field theory. While the nn-th R\'enyi entropy can be computed using the replica method in the path integral representation of quantum field theory, the analytic continuation can only be achieved for some simple systems on a case-by-case basis. In this work, we propose a general framework to tackle this problem using classical and quantum neural networks with supervised learning. We begin by studying several examples with known von Neumann entropy, where the input data is generated by representing TrρAn\text{Tr} \rho_A^n with a generating function. We adopt KerasTuner to determine the optimal network architecture and hyperparameters with limited data. In addition, we frame a similar problem in terms of quantum machine learning models, where the expressivity of the quantum models for the entanglement entropy as a partial Fourier series is established. Our proposed methods can accurately predict the von Neumann and R\'enyi entropies numerically, highlighting the potential of deep learning techniques for solving problems in quantum information theory.Comment: 57 pages, 25 figure

    Quantum Graph Learning : Frontiers and Outlook

    Get PDF
    Quantum theory has shown its superiority in enhancing machine learning. However, facilitating quantum theory to enhance graph learning is in its infancy. This survey investigates the current advances in quantum graph learning (QGL) from three perspectives, i.e., underlying theories, methods, and prospects. We first look at QGL and discuss the mutualism of quantum theory and graph learning, the specificity of graph-structured data, and the bottleneck of graph learning, respectively. A new taxonomy of QGL is presented, i.e., quantum computing on graphs, quantum graph representation, and quantum circuits for graph neural networks. Pitfall traps are then highlighted and explained. This survey aims to provide a brief but insightful introduction to this emerging field, along with a detailed discussion of frontiers and outlook yet to be investigated
    corecore