470 research outputs found

    Regenerative and Adaptive schemes Based on Network Coding for Wireless Relay Network

    Full text link
    Recent technological advances in wireless communications offer new opportunities and challenges for relay network.To enhance system performance, Demodulate-Network Coding (Dm-NC) scheme has been examined at relay node; it works directly to De-map the received signals and after that forward the mixture to the destination. Simulation analysis has been proven that the performance of Dm-NC has superiority over analog-NC. In addition, the Quantize-Decode-NC scheme (QDF-NC) has been introduced. The presented simulation results clearly provide that the QDF-NC perform better than analog-NC. The toggle between analogNC and QDF-NC is simulated in order to investigate delay and power consumption reduction at relay node.Comment: 11 pages, 8 figures, International Journal of Computer Networks & Communications (IJCNC), Vol.4, No.3, May 201

    Quantize and forward cooperative communication: joint channel and frequency offset estimation

    Get PDF

    Queue-Architecture and Stability Analysis in Cooperative Relay Networks

    Full text link
    An abstraction of the physical layer coding using bit pipes that are coupled through data-rates is insufficient to capture notions such as node cooperation in cooperative relay networks. Consequently, network-stability analyses based on such abstractions are valid for non-cooperative schemes alone and meaningless for cooperative schemes. Motivated from this, this paper develops a framework that brings the information-theoretic coding scheme together with network-stability analysis. This framework does not constrain the system to any particular achievable scheme, i.e., the relays can use any cooperative coding strategy of its choice, be it amplify/compress/quantize or any alter-and-forward scheme. The paper focuses on the scenario when coherence duration is of the same order of the packet/codeword duration, the channel distribution is unknown and the fading state is only known causally. The main contributions of this paper are two-fold: first, it develops a low-complexity queue-architecture to enable stable operation of cooperative relay networks, and, second, it establishes the throughput optimality of a simple network algorithm that utilizes this queue-architecture.Comment: 16 pages, 1 figur

    Joint Power Control and Fronthaul Rate Allocation for Throughput Maximization in OFDMA-based Cloud Radio Access Network

    Full text link
    The performance of cloud radio access network (C-RAN) is constrained by the limited fronthaul link capacity under future heavy data traffic. To tackle this problem, extensive efforts have been devoted to design efficient signal quantization/compression techniques in the fronthaul to maximize the network throughput. However, most of the previous results are based on information-theoretical quantization methods, which are hard to implement due to the extremely high complexity. In this paper, we consider using practical uniform scalar quantization in the uplink communication of an orthogonal frequency division multiple access (OFDMA) based C-RAN system, where the mobile users are assigned with orthogonal sub-carriers for multiple access. In particular, we consider joint wireless power control and fronthaul quantization design over the sub-carriers to maximize the system end-to-end throughput. Efficient algorithms are proposed to solve the joint optimization problem when either information-theoretical or practical fronthaul quantization method is applied. Interestingly, we find that the fronthaul capacity constraints have significant impact to the optimal wireless power control policy. As a result, the joint optimization shows significant performance gain compared with either optimizing wireless power control or fronthaul quantization alone. Besides, we also show that the proposed simple uniform quantization scheme performs very close to the throughput performance upper bound, and in fact overlaps with the upper bound when the fronthaul capacity is sufficiently large. Overall, our results would help reveal practically achievable throughput performance of C-RAN, and lead to more efficient deployment of C-RAN in the next-generation wireless communication systems.Comment: submitted for possible publicatio

    Lower bounds on the estimation performance in low complexity quantize-and-forward cooperative systems

    Get PDF
    Cooperative communication can effectively mitigate the effects of multipath propagation fading by using relay channels to provide spatial diversity. A relaying scheme suitable for half-duplex devices is the quantize-and-forward (QF) protocol, in which the information received from the source is quantized at the relay before being forwarded to the destination. In this contribution, the Cramer-Rao bound (CRB) is obtained for the case where all channel parameters in a QF system are estimated at the destination. The CRB is a lower bound (LB) on the mean square estimation error (MSEE) of an unbiased estimate and can thus be used to benchmark practical estimation algorithms. Additionally, the modified Cramer-Rao bound (MCRB) is also presented, which is a looser but computationally less complex bound. An importance sampling technique is developed to speed up the computation of the MCRBs, and the MSEE performance of a practical estimation algorithm is compared with the (M)CRBs. We point out that the parameters of the source-destination and relay-destination channels can be accurately estimated but that inevitably the source-relay channel estimate is poor when the instantaneous SNR on the relay-destination channel is low; however, in this case, the decoder performance is not affected by the inaccurate source-relay channel estimate

    PERFORMANCE ENHANCEMENT OF WIRELESS NETWORKS USING COOPERATIVE DIVERSITY TECHNIQUES

    Get PDF
    Channel weakening is one among the significant issues in wireless communication which can be overcome by the exploiting diversity gain, achieved via cooperation between nodes and relays. In order to improve the gain, generally, we require more than one transmitting antenna in a node, which is not too common due to the limits in size and complexity of wireless mobile devices. Anyway by offering reception apparatuses to other single-receiving wire hubs in a multi-client condition i.e., agreeable decent variety, a virtual multi-radio wire cluster is framed and transmit-assorted variety is cultivated. In our proposed work, a network containing a sender, a destination and a fixed relay, is analyzed with  modified  cooperative diversity scheme  such as Amplify-Quantize and Forward (AFQ) and compared with existing cooperative communication  protocol i.e.,  Amplify and forward (AF). Moreover the performance of the proposed work is evaluated in terms of Bit-Error Rate, SNR and Outage Probabilit
    corecore