250 research outputs found

    Phase resetting reveals network dynamics underlying a bacterial cell cycle

    Get PDF
    Genomic and proteomic methods yield networks of biological regulatory interactions but do not provide direct insight into how those interactions are organized into functional modules, or how information flows from one module to another. In this work we introduce an approach that provides this complementary information and apply it to the bacterium Caulobacter crescentus, a paradigm for cell-cycle control. Operationally, we use an inducible promoter to express the essential transcriptional regulatory gene ctrA in a periodic, pulsed fashion. This chemical perturbation causes the population of cells to divide synchronously, and we use the resulting advance or delay of the division times of single cells to construct a phase resetting curve. We find that delay is strongly favored over advance. This finding is surprising since it does not follow from the temporal expression profile of CtrA and, in turn, simulations of existing network models. We propose a phenomenological model that suggests that the cell-cycle network comprises two distinct functional modules that oscillate autonomously and couple in a highly asymmetric fashion. These features collectively provide a new mechanism for tight temporal control of the cell cycle in C. crescentus. We discuss how the procedure can serve as the basis for a general approach for probing network dynamics, which we term chemical perturbation spectroscopy (CPS)

    Temporal Controls of the Asymmetric Cell Division Cycle in Caulobacter crescentus

    Get PDF
    The asymmetric cell division cycle of Caulobacter crescentus is orchestrated by an elaborate gene-protein regulatory network, centered on three major control proteins, DnaA, GcrA and CtrA. The regulatory network is cast into a quantitative computational model to investigate in a systematic fashion how these three proteins control the relevant genetic, biochemical and physiological properties of proliferating bacteria. Different controls for both swarmer and stalked cell cycles are represented in the mathematical scheme. The model is validated against observed phenotypes of wild-type cells and relevant mutants, and it predicts the phenotypes of novel mutants and of known mutants under novel experimental conditions. Because the cell cycle control proteins of Caulobacter are conserved across many species of alpha-proteobacteria, the model we are proposing here may be applicable to other genera of importance to agriculture and medicine (e.g., Rhizobium, Brucella)

    A Quantitative Study of the Division Cycle of Caulobacter crescentus Stalked Cells

    Get PDF
    Progression of a cell through the division cycle is tightly controlled at different steps to ensure the integrity of genome replication and partitioning to daughter cells. From published experimental evidence, we propose a molecular mechanism for control of the cell division cycle in Caulobacter crescentus. The mechanism, which is based on the synthesis and degradation of three “master regulator” proteins (CtrA, GcrA, and DnaA), is converted into a quantitative model, in order to study the temporal dynamics of these and other cell cycle proteins. The model accounts for important details of the physiology, biochemistry, and genetics of cell cycle control in stalked C. crescentus cell. It reproduces protein time courses in wild-type cells, mimics correctly the phenotypes of many mutant strains, and predicts the phenotypes of currently uncharacterized mutants. Since many of the proteins involved in regulating the cell cycle of C. crescentus are conserved among many genera of α-proteobacteria, the proposed mechanism may be applicable to other species of importance in agriculture and medicine

    Regulatory Response to Carbon Starvation in Caulobacter crescentus

    Get PDF
    Bacteria adapt to shifts from rapid to slow growth, and have developed strategies for long-term survival during prolonged starvation and stress conditions. We report the regulatory response of C. crescentus to carbon starvation, based on combined high-throughput proteome and transcriptome analyses. Our results identify cell cycle changes in gene expression in response to carbon starvation that involve the prominent role of the FixK FNR/CAP family transcription factor and the CtrA cell cycle regulator. Notably, the SigT ECF sigma factor mediates the carbon starvation-induced degradation of CtrA, while activating a core set of general starvation-stress genes that respond to carbon starvation, osmotic stress, and exposure to heavy metals. Comparison of the response of swarmer cells and stalked cells to carbon starvation revealed four groups of genes that exhibit different expression profiles. Also, cell pole morphogenesis and initiation of chromosome replication normally occurring at the swarmer-to-stalked cell transition are uncoupled in carbon-starved cells

    Screen for Localized Proteins in Caulobacter crescentus

    Get PDF
    Precise localization of individual proteins is required for processes such as motility, chemotaxis, cell-cycle progression, and cell division in bacteria, but the number of proteins that are localized in bacterial species is not known. A screen based on transposon mutagenesis and fluorescence activated cell sorting was devised to identify large numbers of localized proteins, and employed in Caulobacter crescentus. From a sample of the clones isolated in the screen, eleven proteins with no previously characterized localization in C. crescentus were identified, including six hypothetical proteins. The localized hypothetical proteins included one protein that was localized in a helix-like structure, and two proteins for which the localization changed as a function of the cell cycle, suggesting that complex three-dimensional patterns and cell cycle-dependent localization are likely to be common in bacteria. Other mutants produced localized fusion proteins even though the transposon has inserted near the 5′ end of a gene, demonstrating that short peptides can contain sufficient information to localize bacterial proteins. The screen described here could be used in most bacterial species

    Insights into the activation mechanism of PopA, a cyclic di-GMP effector protein involved in cell cycle and development of "Caulobacter Crescentus"

    Get PDF
    In Caulobacter crescentus, a complex network integrating cyclic di-GMP and Phosphorylation-dependent signals controls the proteolysis of key regulatory proteins to drive cell cycle and polar morphogenesis. The c-di-GMP input is processed by the effector protein PopA. Upon binding of c-di-GMP, PopA is sequestered to the old cell pole where it recruits the replication and cell division inhibitors CtrA and KidO and mediates their destruction by the polar ClpXP protease prior to entry into S-phase. In addition to its role at the stalked cell pole, PopA localizes to the opposite cell pole in dependence of the general topology factor PodJ where it exerts a yet unknown function. Here we address the activation and polar sequestration mechanism of PopA guided by an existing activation model for the highly homologous c-di-GMP signaling protein PleD. PopA and PleD do not only share an identical domain organization (Rec1-Rec2-GGDEF), but also show similar spatio-temporal behavior during the cell cycle. While PleD is activated and targeted to the old cell pole via phosphorylation-induced dimerization, we show that PopA stalked pole function is phosphorylation-independent and requires c-di-GMP binding as a primary input signal for activation and polar localization. c-di-GMP binds to conserved primary and secondary I-sites within the PopA GGDEF domain and we show that intact binding sites are required for PopA positioning and function. This suggests that c-di-GMP-dependent crosslinking of adjacent GGDEF domains contributes to the localization of an active PopA dimer to the cell pole. Consistent with this, we demonstrate that the GGDEF domain encodes the polar localization signal(s), while the N-terminal receiver domains serve as interaction platform for downstream components that are actively recruited by PopA. Among these downstream factors is RcdA, a small mediator protein that interacts with the first PopA receiver domain and helps to recruit and degrade CtrA and KidO. In a screen for additional components of the PopA pathway we identify two novel proteins that directly interact with PopA, CC1462 and CC2616. CC1462 is a ClpXP substrate that requires PopA for polar positioning and subsequent degradation during swarmer-to-stalked cell transition. Although located in a flagellar gene cluster, deletion of CC1462 did not affect flagellar assembly and function. Its cellular role as well as the significance of its cell cycle-dependent degradation requires further studies. CC2616, the second PopA interaction partner, is not proteolytically processed and thus belongs to another class of PopA-dependent substrates. CC2616 is annotated as guanine deaminase, which is predicted to catalyze the conversion from guanine to xanthine thereby irreversibly removing guanine based nucleotides from a cellular pool. A CC2616 deletion leads to increased attachment and decreased motility, a phenocopy of strains with elevated c-di-GMP levels. It is not clear whether CC2616 indeed has deaminase activity or whether it has adopted a novel function. Taken together, this work provides insight into the activation mechanism of a c-di-GMP effector protein. We propose that PopA has evolved through gene duplication from its ancestor, the catalytic PleD response regulator but has lost catalytic activity of the diguanylate cyclase domain. Moreover, PopA has adopted an inverse intra-molecular information transfer originating through c-di-GMP binding at the C-terminal GGDEF domain, which in turn activates the N-terminal receiver stem to serve as platform for downstream partner recruitment

    Regulation of the Activity of the Dual-Function DnaA Protein in Caulobacter crescentus

    Get PDF
    DnaA is a conserved essential bacterial protein that acts as the initiator of chromosomal replication as well as a master transcriptional regulator in Caulobacter crescentus. Thus, the intracellular levels of active DnaA need to be tightly regulated during the cell cycle. Our previous work suggested that DnaA may be regulated at the level of its activity by the replisome-associated protein HdaA. Here, we describe the construction of a mutant DnaA protein [DnaA(R357A)]. The R357 residue in the AAA+ domain of the C. crescentus DnaA protein is equivalent to the R334 residue of the E. coli DnaA protein, which is required for the Regulatory Inactivation of DnaA (RIDA). We found that the expression of the DnaA(R357A) mutant protein in C. crescentus, but not the expression of the wild-type DnaA protein at similar levels, causes a severe phenotype of over-initiation of chromosomal replication and that it blocks cell division. Thus, the mutant DnaA(R357A) protein is hyper-active to promote the initiation of DNA replication, compared to the wild-type DnaA protein. DnaA(R357A) could not replace DnaA in vivo, indicating that the switch in DnaA activity once chromosomal replication has started may be an essential process in C. crescentus. We propose that the inactivation of DnaA is the main mechanism ensuring that chromosomal replication starts only once per cell cycle. We further observed that the R357A substitution in DnaA does not promote the activity of DnaA as a direct transcriptional activator of four important genes, encoding HdaA, the GcrA master cell cycle regulator, the FtsZ cell division protein and the MipZ spatial regulator of cell division. Thus, the AAA+ domain of DnaA may play a role in temporally regulating the bifunctionality of DnaA by reallocating DnaA molecules from initiating DNA replication to transcribing genes within the unique DnaA regulon of C. crescentus

    Role of core promoter sequences in the mechanism of swarmer cell-specific silencing of gyrB transcription in Caulobacter crescentus

    Get PDF
    BACKGROUND: Each Caulobacter crescentus cell division yields two distinct cell types: a flagellated swarmer cell and a non-motile stalked cell. The swarmer cell is further distinguished from the stalked cell by an inability to reinitiate DNA replication, by the physical properties of its nucleoid, and its discrete program of gene expression. Specifically, with regard to the latter feature, many of the genes involved in DNA replication are not transcribed in swarmer cells. RESULTS: We show that for one of these genes involved in DNA replication, gyrB, its pattern of temporal expression depends upon an 80 base pair promoter region with strong resemblance to the Caulobacter crescentus σ(73 )consensus promoter sequence; regulation does not appear to be affected by the general strength of the promoter activity, as mutations that increased its conformity with the consensus did not affect its cell-cycle expression pattern. Transcription from the gyrB promoter in vitro required only the presence of the σ(73 )RNA polymerase (from E. coli) and the requisite nucleoside triphosphates, although a distinct binding activity, present in crude whole-cell extracts, formed a complex gyrB promoter DNA. We also assayed the effect on gyrB expression in strains containing mutations in either smc or dps, two genes encoding proteins that condense DNA. However we found there was no change in the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. CONCLUSION: These experiments demonstrate that gyrB transcription does not require any auxiliary factors, suggesting that temporal regulation is not dependent upon an activator protein. Swarmer-specific silencing may not be attributable to the observed physical difference in the swarmer cell nucleoid, since mutations in either smc or dps, two genes encoding proteins that condense DNA, did not alter the temporal pattern of gyrB transcription in strains containing deletions in either of these genes. Rather a repressor that specifically recognizes sequences in the gyrB promoter region that are also probably essential for transcription, is likely to be responsible for controlling cell cycle expression

    Cell-size maintenance: universal strategy revealed

    Full text link
    How cells maintain a stable size has fascinated scientists since the beginning of modern biology, but has remained largely mysterious. Recently, however, the ability to analyze single bacteria in real time has provided new, important quantitative insights into this long-standing question in cell biology
    corecore