3,543 research outputs found

    Directed Security Policies: A Stateful Network Implementation

    Full text link
    Large systems are commonly internetworked. A security policy describes the communication relationship between the networked entities. The security policy defines rules, for example that A can connect to B, which results in a directed graph. However, this policy is often implemented in the network, for example by firewalls, such that A can establish a connection to B and all packets belonging to established connections are allowed. This stateful implementation is usually required for the network's functionality, but it introduces the backflow from B to A, which might contradict the security policy. We derive compliance criteria for a policy and its stateful implementation. In particular, we provide a criterion to verify the lack of side effects in linear time. Algorithms to automatically construct a stateful implementation of security policy rules are presented, which narrows the gap between formalization and real-world implementation. The solution scales to large networks, which is confirmed by a large real-world case study. Its correctness is guaranteed by the Isabelle/HOL theorem prover.Comment: In Proceedings ESSS 2014, arXiv:1405.055

    Secure management of logs in internet of things

    Full text link
    Ever since the advent of computing, managing data has been of extreme importance. With innumerable devices getting added to network infrastructure, there has been a proportionate increase in the data which needs to be stored. With the advent of Internet of Things (IOT) it is anticipated that billions of devices will be a part of the internet in another decade. Since those devices will be communicating with each other on a regular basis with little or no human intervention, plethora of real time data will be generated in quick time which will result in large number of log files. Apart from complexity pertaining to storage, it will be mandatory to maintain confidentiality and integrity of these logs in IOT enabled devices. This paper will provide a brief overview about how logs can be efficiently and securely stored in IOT devices.Comment: 6 pages, 1 tabl

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Packet flow analysis in IP networks via abstract interpretation

    Full text link
    Static analysis (aka offline analysis) of a model of an IP network is useful for understanding, debugging, and verifying packet flow properties of the network. There have been static analysis approaches proposed in the literature for networks based on model checking as well as graph reachability. Abstract interpretation is a method that has typically been applied to static analysis of programs. We propose a new, abstract-interpretation based approach for analysis of networks. We formalize our approach, mention its correctness guarantee, and demonstrate its flexibility in addressing multiple network-analysis problems that have been previously solved via tailor-made approaches. Finally, we investigate an application of our analysis to a novel problem -- inferring a high-level policy for the network -- which has been addressed in the past only in the restricted single-router setting.Comment: 8 page

    APMEC: An Automated Provisioning Framework for Multi-access Edge Computing

    Full text link
    Novel use cases and verticals such as connected cars and human-robot cooperation in the areas of 5G and Tactile Internet can significantly benefit from the flexibility and reduced latency provided by Network Function Virtualization (NFV) and Multi-Access Edge Computing (MEC). Existing frameworks managing and orchestrating MEC and NFV are either tightly coupled or completely separated. The former design is inflexible and increases the complexity of one framework. Whereas, the latter leads to inefficient use of computation resources because information are not shared. We introduce APMEC, a dedicated framework for MEC while enabling the collaboration with the management and orchestration (MANO) frameworks for NFV. The new design allows to reuse allocated network services, thus maximizing resource utilization. Measurement results have shown that APMEC can allocate up to 60% more number of network services. Being developed on top of OpenStack, APMEC is an open source project, available for collaboration and facilitating further research activities
    corecore