5,789 research outputs found

    Evacuation Modelling of Mixed-Ability Populations in Fire Emergencies

    Get PDF
    UK statistics have shown that a significant percentage of fatalities in fires have suffered from some kind of disability. In this context 'disability' relates to a person's physical or mental condition that impinges on their ability to react and move promptly in an emergency. Various evacuation modelling techniques are being adopted to study the movement of occupants during emergencies since the exposure of people to fires for experimental purposes is unethical. However, many evacuation models have ignored the effects of disability on escape potential and therefore tend to predict optimal evacuation times. Moreover, whilst providing some valuable insights into certain factors affecting occupant movement, current models are generally presented in isolation and fail to define a general framework for designing solutions to fire safety engineering problems. The purpose of this research programme was to develop a more general methodology for predicting evacuation times of mixed-ability populations. This was made possible through the development and use of a novel concept of evacuation peiformance index (EPI), which is the relative ease of evacuating a disabled person compared to an able-bodied person, founded on a consideration of the effects of disabilities and mobility aids on evacuation times. The author shows how this concept relates three aspects of fire safety, namely, individual characteristics of disabled occupants, the amount of assistance they require, and building design and environmental factors. She contends that the evacuation peifornzance index of a class of individuals is primarily dependent on these three categories. Experimental data to verify the above claim was collected from careflully monitored evacuation drills involving a group of disabled people. Their EPIs were determined along a pre-defined route from which their evacuation times were calculated. Comparisons between predicted times using the EPI concept and measured times from alternative empirical data were seen to be in reasonable agreement. An iterative design procedure is also suggested; one that is capable of predicting worst possible evacuation times by incorporating measures of EPI and escape route dimensions and details. The EPI concept provides fire safety engineering with a logical design philosophy, which is flexible and easily comprehensible. It endeavours to increase understanding of evacuation of disabled people, and provide a simplified mechanism for fire safety design and planning of evacuation procedures

    Simulation-Based Countermeasures Towards Accident Prevention : Virtual Reality Utilization in Industrial Processes and Activities

    Get PDF
    Despite growing industrial interests in fully immersive virtual reality (VR) applications for safety countermeasures, there is scanty research on the subject in the context of accident prevention during manufacturing processes and plant maintenance activities. This dissertation aims to explore and experiment with VR for accident prevention by targeting three workplace safety countermeasures: fire evacuation drills, hazard identification and risk assessments (HIRA), and emergency preparedness and response (EPR) procedures. Drawing on the virtual reality accident causation model (VR-ACM) (i.e., 3D modelling and simulation, accident causation, and safety drills) and the fire evacuation training model, two industrial 3D simulation models were utilized for the immersive assessment and training. These were a lithium-ion battery (LIB) manufacturing factory and a gas power plant (GPP). In total, five studies (publications) were designed to demonstrate the potential of VR in accident prevention during the manufacturing processes and maintenance activities at the facility conceptual stages. Two studies were with the LIB factory simulation to identify inherent hazards and assess risks for redesigning the factory to ensure workplace safety compliance. The other three studies constituted fire hazard identifications, emergency evacuations and hazard control/mitigations during the maintenance activity in the GPP simulation. Both study models incorporated several participants individually immersed in the virtual realm to experience the accident phenomena intuitively. These participants provided feedback for assessing the research objectives. Results of the studies indicated that several inherent hazards in the LIB factory were identified and controlled/mitigated. Secondly, the GPP experiment results suggested that although the maintenance activity in the virtual realm increased the perception of presence, a statistically significant delay was recorded at the pre-movement stage due to the lack of situational safety awareness. Overall, the study demonstrates that participants immersed in a VR plant maintenance activity and manufacturing factory process simulation environments can experience real-time emergency scenarios and conditions necessary for implementing the essential safety countermeasures to prevent accidents.Vaikka kiinnostus virtuaalitodellisuuden (VR) käyttöön turvallisuuden varotoimissa teollisuudessa on kasvanut, tutkimuksia ei ole juurikaan tehty onnettomuuksien ehkäisystä valmistus- ja kunnossapitotoiminnassa. Tämän väitöskirjan tavoitteena on tutkia ja kokeilla VR:ää tapaturmien ehkäisyssä kohdistuen kolmeen työpaikan turvallisuuden varotoimeen: paloharjoitukset, riskien arvioinnit sekä hätätilanteiden valmiusmenettelyt ja toimintasuunnitelmat (EPR). Kokemuksellisessa ja uppouttavassa koulutuksessa hyödynnettiin kahta teollisuuden 3D-simulointimallia, jotka nojautuvat virtuaalitodellisuuden onnettomuuksien aiheutumismalliin (VR-ACM) (eli 3D-mallinnus- ja simulointi, onnettomuussyy- ja turvallisuuskoulutus) sekä paloharjoitusmalliin. Nämä 3D-simulointimallit ovat litiuminoniakkuja (LIB) valmistava tehdas, joka rakennettiin Visual Components 3D-simulointiohjelmistolla (versio 4.0) ja kaasuvoimala (GPP) Unrealin reaaliaikaisella pelimoottorilla (versio 4.2). Yhteensä viisi tutkimusta (julkaisua) suunniteltiin havainnollistamaan VR:n potentiaalia tapaturmien ehkäisyssä valmistusprosessin layout-suunnittelun ja tehtaan konseptivaiheissa tehtävän kunnossapidon aikana. Kaksi tutkimusta tehtiin LIB-tehdassimulaatiolla vaarojen tunnistamiseksi sekä riskien arvioimiseksi. Tutkimukset tehtiin tehtaan uudelleensuunnittelua varten, työturvallisuuden noudattamisen varmistamiseksi. Muut kolme tutkimusta käsittelevät palovaaran tunnistamista, hätäevakuointia ja riskien vähentämistä huoltotoiminnan aikana GPP-simulaatiossa. Molemmissa tutkimusmalleissa oli useita virtuaalimaailmaan uppoutuneita osallistujia, jotka saivat kokea onnettomuudet yksilöllisesti ja intuitiivisesti. Osallistujat antoivat palautetta kokeen jälkeisessä kyselyssä. Kyselyn tuloksien avulla LIB-tehtaassa tunnistettiin ja lievennettiin useita vaaroja. GPP-kokeilun tulokset viittasivat siihen, että vaikka ylläpitotoiminta virtuaalimaailmassa lisäsi teleläsnäoloa, tilastollisesti merkittävä viive kirjattiin liikettä edeltävässä vaiheessa turvallisuustietoisuuden puuteen vuoksi. Kaiken kaikkiaan tutkimus osoittaa, että VR-laitoksen kunnossapitotoimintaan ja tuotantotehtaan prosessisimulaatioympäristöihin uppoutuvat osallistujat voivat kokea reaaliaikaisia hätäskenaarioita ja olosuhteita, jotka ovat välttämättömiä olennaisten turvallisuustoimien toteuttamiseksi.fi=vertaisarvioitu|en=peerReviewed

    A holistic model of emergency evacuations in large, complex, public occupancy buildings

    Get PDF
    Evacuations are crucial for ensuring the safety of building occupants in the event of an emergency. In large, complex, public occupancy buildings (LCPOBs) these procedures are significantly more complex than the simple withdrawal of people from a building. This thesis has developed a novel, holistic, theoretical model of emergency evacuations in LCPOBs inspired by systems safety theory. LCPOBs are integral components of complex socio-technical systems, and therefore the model describes emergency evacuations as control actions initiated in order to return the building from an unsafe state to a safe state where occupants are not at risk of harm. The emergency evacuation process itself is comprised of four aspects - the movement (of building occupants), planning and management, environmental features, and evacuee behaviour. To demonstrate its utility and applicability, the model has been employed to examine various aspects of evacuation procedures in two example LCPOBs - airport terminals, and sports stadiums. The types of emergency events initiating evacuations in these buildings were identified through a novel hazard analysis procedure, which utilised online news articles to create events databases of previous evacuations. Security and terrorism events, false alarms, and fires were found to be the most common cause of evacuations in these buildings. The management of evacuations was explored through model-based systems engineering techniques, which identified the communication methods and responsibilities of staff members managing these events. Social media posts for an active shooting event were analysed using qualitative and machine learning methods to determine their utility for situational awareness. This data source is likely not informative for this purpose, as few posts detail occupant behaviours. Finally, an experimental study on pedestrian dynamics with movement devices was conducted, which determined that walking speeds during evacuations were unaffected by evacuees dragging luggage, but those pushing pushchairs and wheelchairs will walk significantly slower.Open Acces

    Effects of Exit Doors and Number of Passengers on Airport Evacuation Effeciency Using Agent Based Simulation

    Get PDF
    Many factors determine the efficiency of evacuation at an airport during emergencies. These factors are very complicated and many times, unpredictable. The Federal Aviation Administration provides numerous advisory circulars and regulations for managing airport evacuation. However, a thorough literature review suggests that research on airport evacuation is still very limited. A study was designed to simulate an airport evacuation to address this problem. This study selected a local certificated airport in the United States for this purpose. We developed and validated a situation model using AnyLogic to investigate evacuation time at this airport. Using different variables, such as the number of passengers and the number of exits, we calculated the total evacuation time. As a result, this study provided statistical data to show how the reduced number of exits and the increased amount of passenger traffic increased the total duration of the evacuation

    Systems evaluation of life safety in fires

    Get PDF

    Students' evacuation behavior during an emergency at schools:A systematic literature review

    Get PDF
    Disasters and emergencies frequently happen, and some of them require population evacuation. Children can be severely affected during evacuations due to their lower capability to analyze, perceive, and answer disaster risks. Although several studies attempted to address the safety of children during the evacuation, the existing literature lacks a systematic review of students' evacuation behavior during school time. Therefore, this study aims to conduct a systematic literature review to explore how students' evacuation behavior during school time has been addressed by previous scholars and identify gaps in knowledge. The review process included three steps: formulating the research question, establishing strategic search strategies, and data extraction and analysis. The studies have been identified by searching academic search engines and refined the recognized publications unbiasedly. The researchers have then thematically analyzed the objectives and findings of the selected studies resulting in the identification of seven themes in the field of students' evacuation behavior during school time. Finally, the study put forward suggestions for future research directions to efficiently address the recognized knowledge gaps.</p

    Safe Evacuation for All A top 10 List of Requirements

    Get PDF
    Evacuations are an important aspect of emergency planning. Many persons with special needs could reach a safe area on their own or with assistance by other people around, if evacuation planning and guidance considered them. The so-called self-rescue is crucial for safe evacuation, as fire services and other first-responders need some time to arrive at the scene. In general, people should find the conditions to arrive at a safe area on their own. In many buildings and infrastructures today, self-rescue is difficult for persons with special needs, e.g. wheelchair users. Sometimes it appears that designers and fire safety engineers only think of “average”, healthy and agile people in evacuations. But for safe and effective evacuations, different groups of people and their needs have to be considered. The paper suggests a top 10 list of requirements for safe evacuation and improvement of self-rescue from a psychological point of view. Universal Design or Design for All in evacuation has become more relevant in recent times, since accessibility as a political goal has made it possible for persons with special needs to participate more easily in public life. Nonetheless, regulations focus on how people enter a building but not on how to evacuate safely. Preparing for safer evacuations requires knowledge about different occupant groups and their needs. Requirements for different phases of evacuations are discussed and their implications for simulation and modelling, e.g. the potential impact of physiological requirements. The need for a multi-method approach to gather and integrate data, factors to foster safe evacuations, just as practical and design requirements are included. When self-rescue is not possible, assisted evacuation will rely on good leadership fostering social motivation. Last but not least, implementing design for all will help everyone to evacuate safely

    flooding risk in existing urban environment from human behavioral patterns to a microscopic simulation model

    Get PDF
    Abstract Climate changes-related floods will seriously strike population in existing urban environment. Despite Current assessment methods seem to underestimate the human behaviors influence on individuals' safety, especially during outdoor evacuation. Representing pedestrians' evacuation would allow considering the "human" factor in risk analysis. This work proposes a flood-induced pedestrians' evacuation simulation model, based on a combined microscopic approach. Behavioral rules, obtained by real events videotapes analyses, are organized in an agent-based model. Motion criteria proposals are based on the Social Force Model. Experimental motion quantities values are offered. The model will be implemented in a risk assessment simulation tool
    corecore