26 research outputs found

    Embedding Stacked Polytopes on a Polynomial-Size Grid

    Full text link
    A stacking operation adds a dd-simplex on top of a facet of a simplicial dd-polytope while maintaining the convexity of the polytope. A stacked dd-polytope is a polytope that is obtained from a dd-simplex and a series of stacking operations. We show that for a fixed dd every stacked dd-polytope with nn vertices can be realized with nonnegative integer coordinates. The coordinates are bounded by O(n2log(2d))O(n^{2\log(2d)}), except for one axis, where the coordinates are bounded by O(n3log(2d))O(n^{3\log(2d)}). The described realization can be computed with an easy algorithm. The realization of the polytopes is obtained with a lifting technique which produces an embedding on a large grid. We establish a rounding scheme that places the vertices on a sparser grid, while maintaining the convexity of the embedding.Comment: 22 pages, 10 Figure

    Robust gift wrapping for the three-dimensional convex hull

    Get PDF
    A conventional gift-wrapping algorithm for constructing the three-dimensional convex hull is revised into a numerically robust one. The proposed algorithm places the highest priority on the topological condition that the boundary of the convex hull should be isomorphic to a sphere, and uses numerical values as lower-prirority information for choosing one among the combinatorially consistent branches. No matter how poor the arithmetic precision may be, the algorithm carries out its task and gives as the output a topologically consistent approximation to the true convex hull

    Computational Geometric and Algebraic Topology

    Get PDF
    Computational topology is a young, emerging field of mathematics that seeks out practical algorithmic methods for solving complex and fundamental problems in geometry and topology. It draws on a wide variety of techniques from across pure mathematics (including topology, differential geometry, combinatorics, algebra, and discrete geometry), as well as applied mathematics and theoretical computer science. In turn, solutions to these problems have a wide-ranging impact: already they have enabled significant progress in the core area of geometric topology, introduced new methods in applied mathematics, and yielded new insights into the role that topology has to play in fundamental problems surrounding computational complexity. At least three significant branches have emerged in computational topology: algorithmic 3-manifold and knot theory, persistent homology and surfaces and graph embeddings. These branches have emerged largely independently. However, it is clear that they have much to offer each other. The goal of this workshop was to be the first significant step to bring these three areas together, to share ideas in depth, and to pool our expertise in approaching some of the major open problems in the field
    corecore