184 research outputs found

    Quantitative comparison of myocardial fiber structure between mice, rabbit, and sheep using diffusion tensor cardiovascular magnetic resonance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Accurate interpretations of cardiac functions require precise structural models of the myocardium, but the latter is not available always and for all species. Although scaling or substitution of myocardial fiber information from alternate species has been used in cardiac functional modeling, the validity of such practice has not been tested.</p> <p>Methods</p> <p>Fixed mouse (n = 10), rabbit (n = 6), and sheep (n = 5) hearts underwent diffusion tensor imaging (DTI). The myocardial structures in terms of the left ventricular fiber orientation helix angle index were quantitatively compared between the mouse rabbit and sheep hearts.</p> <p>Results</p> <p>The results show that significant fiber structural differences exist between any two of the three species. Specifically, the subepicardial fiber orientation, and the transmural range and linearity of fiber helix angles are significantly different between the mouse and either rabbit or sheep. Additionally, a significant difference was found between the transmural helix angle range between the rabbit and sheep. Across different circumferential regions of the heart, the fiber orientation was not found to be significantly different.</p> <p>Conclusions</p> <p>The current study indicates that myocardial structural differences exist between different size hearts. An immediate implication of the present findings for myocardial structural or functional modeling studies is that caution must be exercised when extrapolating myocardial structures from one species to another.</p

    Doctor of Philosophy

    Get PDF
    dissertationMyocardial microstructure plays an important role in sustaining the orchestrated beating motion of the heart. Several microstructural components, including myocytes and auxiliary cells, extracellular space, and blood vessels provide the infrastructure for normal heart function, including excitation propagation, myocyte contraction, delivery of oxygen and nutrients, and removing byproduct wastes. Cardiac diseases cause deleterious changes to some or all of these microstructural components in the detrimental process of cardiac remodeling. Since heart failure is among the leading causes of death in the world, new and novel tools to noninvasively characterize heart microstructure are needed for monitoring and staging of cardiac disease. In this regards, diffusion magnetic resonance imaging (MRI) provides a promising framework to probe and quantify tissue microstructure without the need for exogenous contrast agent. As diffusion in 3-dimensional space is characterized by the diffusion tensor, MR diffusion tensor imaging (DTI) is being used to noninvasively measure anisotropic diffusion, and thus the magnitude and spatial orientation of microstructural organization of tissues, including the heart. However, even though in vivo cardiac DTI has become more clinically available, to date the origin and behavior of different microstructural components on the measured DTI signal remain to be explicitly specified. The presented studies in this work demonstrate that DTI can be used as a noninvasive and contrast-free imaging modality to characterize myocyte size and density, extracellular collagen content, and the directional magnitude of blood flow. The identified applications are expected to provide metrics to enable physicians to detect, quantify, and stage different microstructural components during progression of cardiac disease

    Novel cardiovascular magnetic resonance phenotyping of the myocardium

    Get PDF
    INTRODUCTION Left ventricular (LV) microstructure is unique, composed of a winding helical pattern of myocytes and rotating aggregations of myocytes called sheetlets. Hypertrophic cardiomyopathy (HCM) is a cardiovascular disease characterised by left ventricular hypertrophy (LVH), however the link between LVH and underlying microstructural aberration is poorly understood. In vivo cardiovascular diffusion tensor imaging (cDTI) is a novel cardiovascular MRI (CMR) technique, capable of characterising LV microstructural dynamics non-invasively. In vivo cDTI may therefore improve our understanding microstructural-functional relationships in health and disease. METHODS AND RESULTS The monopolar diffusion weighted stimulated echo acquisition mode (DW-STEAM) sequence was evaluated for in vivo cDTI acquisitions at 3Tesla, in healthy volunteers (HV), patients with hypertensive LVH, and HCM patients. Results were contextualised in relation to extensively explored technical limitations. cDTI parameters demonstrated good intra-centre reproducibility in HCM, and good inter-centre reproducibility in HV. In all subjects, cDTI was able to depict the winding helical pattern of myocyte orientation known from histology, and the transmural rate of change in myocyte orientation was dependent on LV size and thickness. In HV, comparison of cDTI parameters between systole and diastole revealed an increase in transmural gradient, combined with a significant re-orientation of sheetlet angle. In contrast, in HCM, myocyte gradient increased between phases, however sheetlet angulation retained a systolic-like orientation in both phases. Combined analysis with hypertensive patients revealed a proportional decrease in sheetlet mobility with increasing LVH. CONCLUSION In vivo DW-STEAM cDTI can characterise LV microstructural dynamics non-invasively. The transmural rate of change in myocyte angulation is dependent on LV size and wall thickness, however inter phase changes in myocyte orientation are unaffected by LVH. In contrast, sheetlet dynamics demonstrate increasing dysfunction, in proportion to the degree of LVH. Resolving technical limitations is key to advancing this technique, and improving the understanding of the role of microstructural abnormalities in cardiovascular disease expression.Open Acces

    Doctor of Philosophy

    Get PDF
    dissertationDiffusion tensor MRI (DT-MRI or DTI) has been proven useful for characterizing biological tissue microstructure, with the majority of DTI studies having been performed previously in the brain. Other studies have shown that changes in DTI parameters are detectable in the presence of cardiac pathology, recovery, and development, and provide insight into the microstructural mechanisms of these processes. However, the technical challenges of implementing cardiac DTI in vivo, including prohibitive scan times inherent to DTI and measuring small-scale diffusion in the beating heart, have limited its widespread usage. This research aims to address these technical challenges by: (1) formulating a model-based reconstruction algorithm to accurately estimate DTI parameters directly from fewer MRI measurements and (2) designing novel diffusion encoding MRI pulse sequences that compensate for the higher-order motion of the beating heart. The model-based reconstruction method was tested on undersampled DTI data and its performance was compared against other state-of-the-art reconstruction algorithms. Model-based reconstruction was shown to produce DTI parameter maps with less blurring and noise and to estimate global DTI parameters more accurately than alternative methods. Through numerical simulations and experimental demonstrations in live rats, higher-order motion compensated diffusion-encoding was shown to successfully eliminate signal loss due to motion, which in turn produced data of sufficient quality to accurately estimate DTI parameters, such as fiber helix angle. Ultimately, the model-based reconstruction and higher-order motion compensation methods were combined to characterize changes in the cardiac microstructure in a rat model with inducible arterial hypertension in order to demonstrate the ability of cardiac DTI to detect pathological changes in living myocardium

    Comparison of diffusion tensor imaging by cardiovascular magnetic resonance and gadolinium enhanced 3D image intensity approaches to investigation of structural anisotropy in explanted rat hearts

    Get PDF
    Background: Cardiovascular magnetic resonance (CMR) can through the two methods 3D FLASH and diffusion tensor imaging (DTI) give complementary information on the local orientations of cardiomyocytes and their laminar arrays. Methods: Eight explanted rat hearts were perfused with Gd-DTPA contrast agent and fixative and imaged in a 9.4T magnet by two types of acquisition: 3D fast low angle shot (FLASH) imaging, voxels 50 × 50 × 50 μm, and 3D spin echo DTI with monopolar diffusion gradients of 3.6 ms duration at 11.5 ms separation, voxels 200 × 200 × 200 μm. The sensitivity of each approach to imaging parameters was explored. Results:The FLASH data showed laminar alignments of voxels with high signal, in keeping with the presumed predominance of contrast in the interstices between sheetlets. It was analysed, using structure-tensor (ST) analysis, to determine the most (v 1 ST ), intermediate (v 2 ST ) and least (v 3 ST ) extended orthogonal directions of signal continuity. The DTI data was analysed to determine the most (e 1 DTI ), intermediate (e 2 DTI ) and least (e 3 DTI ) orthogonal eigenvectors of extent of diffusion. The correspondence between the FLASH and DTI methods was measured and appraised. The most extended direction of FLASH signal (v 1 ST ) agreed well with that of diffusion (e 1 DTI ) throughout the left ventricle (representative discrepancy in the septum of 13.3 ± 6.7°: median ± absolute deviation) and both were in keeping with the expected local orientations of the long-axis of cardiomyocytes. However, the orientation of the least directions of FLASH signal continuity (v 3 ST ) and diffusion (e 3 ST ) showed greater discrepancies of up to 27.9 ± 17.4°. Both FLASH (v 3 ST ) and DTI (e 3 DTI ) where compared to directly measured laminar arrays in the FLASH images. For FLASH the discrepancy between the structure-tensor calculated v 3 ST and the directly measured FLASH laminar array normal was of 9 ± 7° for the lateral wall and 7 ± 9° for the septum (median ± inter quartile range), and for DTI the discrepancy between the calculated v 3 DTI and the directly measured FLASH laminar array normal was 22 ± 14° and 61 ± 53.4°. DTI was relatively insensitive to the number of diffusion directions and to time up to 72 hours post fixation, but was moderately affected by b-value (which was scaled by modifying diffusion gradient pulse strength with fixed gradient pulse separation). Optimal DTI parameters were b = 1000 mm/s2 and 12 diffusion directions. FLASH acquisitions were relatively insensitive to the image processing parameters explored. Conclusions: We show that ST analysis of FLASH is a useful and accurate tool in the measurement of cardiac microstructure. While both FLASH and the DTI approaches appear promising for mapping of the alignments of myocytes throughout myocardium, marked discrepancies between the cross myocyte anisotropies deduced from each method call for consideration of their respective limitations

    Elucidation of Emergent Regional Mechanisms of Heart Muscle Dysfunction in the Mouse Model of Duchenne Muscular Dystrophy

    Get PDF
    Cardiac dysfunction is a primary cause of mortality in Duchenne Muscular Dystrophy (DMD), potentially related to elevated cytosolic calcium. However, the regional versus global functional consequences of cellular calcium mishandling have not been defined in the whole heart. Here, we elucidate, for the first time, loci- and age-dependencies between calcium mishandling and myocardial sheet function as a manifestation of dystrophin-deficient cardiomyopathy. We also map calcium transients to illustrate the regional dependence of ion flux disturbances in the dystrophin-deficient (mdx) mouse heart. Furthermore, we elucidate abnormalities in autophagic processes that can be corrected with nanoparticle therapeutics delivering rapamycin to heart tissues to improve ventricular function in affected older mice with incipient cardiomyopathy. We conclude that the rapid reversibility of functional defects by reducing cytosolic calcium or by impacting impaired autophagy points to the significance of regional mechanical factors in the progression of the disease

    Micro-computed tomography for high resolution soft tissue imaging; applications in the normal and failing heart

    Get PDF
    The normal structure and function of the heart, the common pathological changes that cause abnormal function and the interventions proposed to improve or restore its function are fundamentally based on cardiac anatomy. Therefore in all these areas a detailed and accurate understanding of 3D structure is essential. However there is still disparity over some aspects of the form and function of the healthy heart. Furthermore, in heart failure (HF) the transition from compensated to decompensated HF is poorly understood, and details of ventricular, and particularly atrial, remodelling and their effects on cardiac function are yet to be fully elucidated. In addition little is known on how the 3D morphology of the cardiac conduction system is affected in disease, and further knowledge is required on the structural substrates for arrhythmogenesis associated with HF. Here we have developed contrast enhanced micro-CT for soft tissue imaging, allowing non-invasive high resolution (~5 µm attainable) differentiation of multiple soft tissue types including; muscle, connective tissue and fat. Micro-CT was optimised for imaging of whole intact mammalian hearts and from these data we reveal novel morphological and anatomical detail in healthy hearts and in hearts after experimental HF (volume and pressure overload). Remodelling of the myocardium in HF was dramatic with significant hypertrophy and dilatation observed in both atria and ventricles. The atria showed a 67% increase in myocardial volume, with the left atrium showing a 93% increase. The pectinate muscle: wall thickness ratio was significantly increased in both atria (p

    Computational biomechanics of acute myocardial infarction and its treatment

    Get PDF
    The intramyocardial injection of biomaterials is an emerging therapy for myocardial infarction. Computational methods can help to study the mechanical effect s of biomaterial injectates on the infarcted heart s and can contribute to advance and optimise the concept of this therapy. The distribution of polyethylene glycol hydrogel injectate delivered immediately after the infarct induction was studied using rat infarct model. A micro-structural three-dimensional geometrical model of the entire injectate was reconstructed from histological micro graphs. The model provides a realistic representation of biomaterial injectates in computational models at macroscopic and microscopic level. Biaxial and compression mechanical testing was conducted for healing rat myocardial infarcted tissue at immediate (0 day), 7, 14 and 28 days after infarction onset. Infarcts were found to be mechanically anisotropic with the tissue being stiffer in circumferential direction than in longitudinal direction. The 0, 7, 14 and 28 days infarcts showed 443, 670, 857 and 1218 kPa circumferential tensile moduli. The 28 day infarct group showed a significantly higher compressive modulus compared to the other infarct groups (p= 0.0055, 0.028, and 0.018 for 0, 7 and 14 days groups). The biaxial mechanical data were utilized to establish material constitutive models of rat healing infarcts. Finite element model s and genetic algorithms were employed to identify the parameters of Fung orthotropic hyperelastic strain energy function for the healing infarcts. The provided infarct mechanical data and the identified constitutive parameters offer a platform for investigations of mechanical aspects of myocardial infarction and therapies in the rat, an experimental model extensively used in the development of infarct therapies. Micro-structurally detailed finite element model of a hydrogel injectate in an infarct was developed to provide an insight into the micromechanics of a hydrogel injectate and infarct during the diastolic filling. The injectate caused the end-diastolic fibre stresses in the infarct zone to decrease from 22.1 to 7.7 kPa in the 7 day infarct and from 35.7 to 9.7 kPa in the 28 day infarct. This stress reduction effect declined as the stiffness of the biomaterial increased. It is suggested that the gel works as a force attenuating system through micromechanical mechanisms reducing the force acting on tissue layers during the passive diastolic dilation of the left ventricle and thus reducing the stress induced in these tissue layers

    3D MRI of explanted sheep hearts with submillimeter isotropic spatial resolution: comparison between diffusion tensor and structure tensor imaging

    Get PDF
    OBJECTIVE: The aim of the study is to compare structure tensor imaging (STI) with diffusion tensor imaging (DTI) of the sheep heart (approximately the same size as the human heart). MATERIALS AND METHODS: MRI acquisition on three sheep ex vivo hearts was performed at 9.4 T/30 cm with a seven-element RF coil. 3D FLASH with an isotropic resolution of 150 µm and 3D spin-echo DTI at 600 µm were performed. Tensor analysis, angles extraction and segments divisions were performed on both volumes. RESULTS: A 3D FLASH allows for visualization of the detailed structure of the left and right ventricles. The helix angle determined using DTI and STI exhibited a smooth transmural change from the endocardium to the epicardium. Both the helix and transverse angles were similar between techniques. Sheetlet organization exhibited the same pattern in both acquisitions, but local angle differences were seen and identified in 17 segments representation. DISCUSSION: This study demonstrated the feasibility of high-resolution MRI for studying the myocyte and myolaminar architecture of sheep hearts. We presented the results of STI on three whole sheep ex vivo hearts and demonstrated a good correspondence between DTI and STI
    corecore