405 research outputs found

    Solving a capacitated waste collection problem using an open-source tool

    Get PDF
    Increasing complexity in municipal solid waste streams worldwide is pressing Solid Waste Management Systems (SWMS), which need solutions to manage the waste properly. Waste collection and transport is the first task, traditionally carried out by countries/municipalities responsible for waste management. In this approach, drivers are responsible for decision-making regarding collection routes, leading to inefficient resource expenses. In this sense, strategies to optimize waste collection routes are receiving increasing interest from authorities, companies and the scientific community. Works in this strand usually focus on waste collection route optimization in big cities, but small towns could also benefit from technological development to improve their SWMS. Waste collection is related to combinatorial optimization that can be modeled as the capacitated vehicle routing problem. In this paper, a Capacitated Waste Collection Problem will be considered to evaluate the performance of metaheuristic approaches in waste collection optimization in the city of Bragança, Portugal. The algorithms used are available on Google OR-tools, an open-source tool with modules for solving routing problems. The Guided Local Search obtained the best results in optimizing waste collection planning. Furthermore, a comparison with real waste collection data showed that the results obtained with the application of OR-Tools are promising to save resources in waste collection.This work has been supported by FCT - Fundação para a Ciência e Tecnologia within the R &D Units Project Scope: UIDB/05757/2020, UIDB/00690/2020, UIDB/50020/2020, and UIDB/00319/2020. Adriano Silva was supported by FCT-MIT Portugal PhD grant SFRH/BD/151346/2021, and Filipe Alves was supported by FCT PhD grant SFRH/BD/143745/2019

    A revisited branch-and-cut algorithm for large-scale orienteering problems

    Get PDF
    The orienteering problem is a route optimization problem which consists of finding a simple cycle that maximizes the total collected profit subject to a maximum distance limitation. In the last few decades, the occurrence of this problem in real-life applications has boosted the development of many heuristic algorithms to solve it. However, during the same period, not much research has been devoted to the field of exact algorithms for the orienteering problem. The aim of this work is to develop an exact method which is able to obtain the optimum in a wider set of instances than with previous methods, or to improve the lower and upper bounds in its disability. We propose a revisited version of the branch-and-cut algorithm for the orienteering problem which includes new contributions in the separation algorithms of inequalities stemming from the cycle problem, in the separation loop, in the variables pricing, and in the calculation of the lower and upper bounds of the problem. Our proposal is compared to three state-of-the-art algorithms on 258 benchmark instances with up to 7397 nodes. The computational experiments show the relevance of the designed components where 18 new optima, 76 new best-known solutions and 85 new upper-bound values were obtained

    Logic learning and optimized drawing: two hard combinatorial problems

    Get PDF
    Nowadays, information extraction from large datasets is a recurring operation in countless fields of applications. The purpose leading this thesis is to ideally follow the data flow along its journey, describing some hard combinatorial problems that arise from two key processes, one consecutive to the other: information extraction and representation. The approaches here considered will focus mainly on metaheuristic algorithms, to address the need for fast and effective optimization methods. The problems studied include data extraction instances, as Supervised Learning in Logic Domains and the Max Cut-Clique Problem, as well as two different Graph Drawing Problems. Moreover, stemming from these main topics, other additional themes will be discussed, namely two different approaches to handle Information Variability in Combinatorial Optimization Problems (COPs), and Topology Optimization of lightweight concrete structures

    The bus sightseeing problem

    Get PDF
    The basic characteristic of vehicle routing problems with profits (VRPP) is that locations to be visited are not predetermined. On the contrary, they are selected in pursuit of maximizing the profit collected from them. Significant research focus has been directed toward profitable routing variants due to the practical importance of their applications and their interesting structure, which jointly optimizes node selection and routing decisions. Profitable routing applications arise in the tourism industry aiming to maximize the profit score of attractions visited within a limited time period. In this paper, a new VRPP is introduced, referred to as the bus sightseeing problem (BSP). The BSP calls for determining bus tours for transporting different groups of tourists with different preferences on touristic attractions. Two interconnected decision levels have to be jointly tackled: assignment of tourists to buses and routing of buses to the various attractions. A mixed-integer programming formulation for the BSP is provided and solved by a Benders decomposition algorithm. For large-scale instances, an iterated local search based metaheuristic algorithm is developed with some tailored neighborhood operators. The proposed methods are tested on a large family of test instances, and the obtained computational results demonstrate the effectiveness of the proposed solution approaches
    corecore