3,897 research outputs found

    A Branching Distributed Temporal Logic for Reasoning about Quantum State Transformations

    Get PDF
    The Distributed Temporal Logic DTL allows one to reason about temporal properties of a distributed system from the local point of view of the system's agents, which are assumed to execute independently and to interact by means of event sharing. In this paper, we introduce the Quantum Branching Distributed Temporal Logic QBDTL, a variant of DTL able to represent quantum state transformations in an abstract, qualitative way. In QBDTL, each agent represents a distinct quantum bit (the unit of quantum information theory), which evolves by means of quantum transformations and possibly interacts with other agents, and n-ary quantum operators act as communication/synchronization points between agents. We endow QBDTL with a DTL-style semantics, which fits the intrinsically distributed nature of quantum computing, we formalize a labeled deduction system for QBDTL, and we prove the soundness and completeness of this deduction system with respect to the given semantics. We give a number of examples and, finally, we discuss possible extensions of our logic in order to reason about entangle-ment phenomena

    Creation and characterization of vector vortex modes for classical and quantum communication

    Full text link
    Vector vortex beams are structured states of light that are non-separable in their polarisation and spatial mode, they are eigenmodes of free-space and many fibre systems, and have the capacity to be used as a modal basis for both classical and quantum communication. Here we outline recent progress in our understanding of these modes, from their creation to their characterization and detection. We then use these tools to study the propagation behaviour of such modes in free-space and optical fibre and show that modal cross-talk results in a decay of vector states into separable scalar modes, with a concomitant loss of information. We present a comparison between probabilistic and deterministic detection schemes showing that the former, while ubiquitous, negates the very benefit of increased dimensionality in quantum communication while reducing signal in classical communication links. This work provides a useful introduction to the field as well as presenting new findings and perspectives to advance it further

    Categorical Ontology of Complex Systems, Meta-Systems and Theory of Levels: The Emergence of Life, Human Consciousness and Society

    Get PDF
    Single cell interactomics in simpler organisms, as well as somatic cell interactomics in multicellular organisms, involve biomolecular interactions in complex signalling pathways that were recently represented in modular terms by quantum automata with ‘reversible behavior’ representing normal cell cycling and division. Other implications of such quantum automata, modular modeling of signaling pathways and cell differentiation during development are in the fields of neural plasticity and brain development leading to quantum-weave dynamic patterns and specific molecular processes underlying extensive memory, learning, anticipation mechanisms and the emergence of human consciousness during the early brain development in children. Cell interactomics is here represented for the first time as a mixture of ‘classical’ states that determine molecular dynamics subject to Boltzmann statistics and ‘steady-state’, metabolic (multi-stable) manifolds, together with ‘configuration’ spaces of metastable quantum states emerging from complex quantum dynamics of interacting networks of biomolecules, such as proteins and nucleic acids that are now collectively defined as quantum interactomics. On the other hand, the time dependent evolution over several generations of cancer cells --that are generally known to undergo frequent and extensive genetic mutations and, indeed, suffer genomic transformations at the chromosome level (such as extensive chromosomal aberrations found in many colon cancers)-- cannot be correctly represented in the ‘standard’ terms of quantum automaton modules, as the normal somatic cells can. This significant difference at the cancer cell genomic level is therefore reflected in major changes in cancer cell interactomics often from one cancer cell ‘cycle’ to the next, and thus it requires substantial changes in the modeling strategies, mathematical tools and experimental designs aimed at understanding cancer mechanisms. Novel solutions to this important problem in carcinogenesis are proposed and experimental validation procedures are suggested. From a medical research and clinical standpoint, this approach has important consequences for addressing and preventing the development of cancer resistance to medical therapy in ongoing clinical trials involving stage III cancer patients, as well as improving the designs of future clinical trials for cancer treatments.\ud \ud \ud KEYWORDS: Emergence of Life and Human Consciousness;\ud Proteomics; Artificial Intelligence; Complex Systems Dynamics; Quantum Automata models and Quantum Interactomics; quantum-weave dynamic patterns underlying human consciousness; specific molecular processes underlying extensive memory, learning, anticipation mechanisms and human consciousness; emergence of human consciousness during the early brain development in children; Cancer cell ‘cycling’; interacting networks of proteins and nucleic acids; genetic mutations and chromosomal aberrations in cancers, such as colon cancer; development of cancer resistance to therapy; ongoing clinical trials involving stage III cancer patients’ possible improvements of the designs for future clinical trials and cancer treatments. \ud \u

    it could rain weather forecasting as a reasoning process

    Get PDF
    Abstract Meteorological forecasting is the process of providing reliable prediction about the future weathear within a given interval of time. Forecasters adopt a model of reasoning that can be mapped onto an integrated conceptual framework. A forecaster essentially precesses data in advance by using some models of machine learning to extract macroscopic tendencies such as air movements, pressure, temperature, and humidity differentials measured in ways that depend upon the model, but fundamentally, as gradients. Limit values are employed to transform these tendencies in fuzzy values, and then compared to each other in order to extract indicators, and then evaluate these indicators by means of priorities based upon distance in fuzzy values. We formalise the method proposed above in a workflow of evaluation steps, and propose an architecture that implements the reasoning techniques

    Development of Efficient Intensity Based Registration Techniques for Multi-modal Brain Images

    Get PDF
    Recent advances in medical imaging have resulted in the development of many imaging techniques that capture various aspects of the patients anatomy and metabolism. These are accomplished with image registration: the task of transforming images on a common anatomical coordinate space. Image registration is one of the important task for multi-modal brain images, which has paramount importance in clinical diagnosis, leads to treatment of brain diseases. In many other applications, image registration characterizes anatomical variability, to detect changes in disease state over time, and by mapping functional information into anatomical space. This thesis is focused to explore intensity-based registration techniques to accomplish precise information with accurate transformation for multi-modal brain images. In this view, we addressed mainly three important issues of image registration both in the rigid and non-rigid framework, i.e. i) information theoretic based similarity measure for alignment measurement, ii) free form deformation (FFD) based transformation, and iii) evolutionary technique based optimization of the cost function. Mutual information (MI) is a widely used information theoretic similarity measure criterion for multi-modal brain image registration. MI only dense the quantitative aspects of information based on the probability of events. For rustication of the information of events, qualitative aspect i.e. utility or saliency is a necessitate factor for consideration. In this work, a novel similarity measure is proposed, which incorporates the utility information into mutual Information, known as Enhanced Mutual Information(EMI).It is found that the maximum information gain using EMI is higher as compared to that of other state of arts. The utility or saliency employed in EMI is a scale invariant parameter, and hence it may fail to register in case of projective and perspective transformations. To overcome this bottleneck, salient region (SR) based Enhance Mutual Information (SR-EMI)is proposed, a new similarity measure for robust and accurate registration. The proposed SR-EMI based registration technique is robust to register the multi-modal brain images at a faster rate with better alignment

    Lambda calculi and logics for quantum computing

    Get PDF
    In questa tesi proponiamo diversi risultati originali riguardo i lambda calcoli e le logiche per le computazioni quantistiche. Il lavoro `e diviso in tre parti. Nella prima parte richiamiamo alcune nozioni fondamentali di algebra lineare, logica e computazione quantistica. La seconda parte volge l\u2019attenzione ai lambda calcoli quantistici. Introdurremo dapprima Q, un lambda calcolo quantistico con controllo classico. Studieremo le sue proprie`a classiche, come la confluenza e la Subject Reduction, proseguendo poi con un\u2019importante propriet`a quantistica, chiamata standardizzazione. In seguito sar`a studiato il potere espressivo di Q, attraverso la provata equivalenza con il formalismo delle famiglie di circuiti quantistici. A partire da Q, sar`a poi definito e studiato il sottolinguaggio SQ, ispirato alla Soft Linear Logic ed intrinsecamente polytime. Sia Q sia SQ non hanno nella sintassi un operatore di misurazione, e quindi un\u2019implicita misurazione viene assunta alla fine delle computazioni. I problemi relativi alla misura sono studiati in un terzo lambda calcolo chiamato Q*, che estende Q con un operatore di misura. Partendo dall\u2019osservazione che un esplicito operatore di misura interrompe l\u2019evoluzione altrimenti deterministica del calcolo, importando un comportamento probabilistico, sono stati definiti dei nuovi strumenti tecnici quali le computazioni probabilistiche e gli stati misti. Proveremo un forte teorema di confluenza, valido anche nell\u2019importante caso delle computazioni infinite. Nella terza parte della tesi studieremo invece due sistemi modali etichettati, chiamati rispettivamente MSQS e MSpQS, che permettono di ragionare qualitativamente sulle computazioni quantistiche. I due sistemi rappresentano un possibile punto di partenza verso un nuovo modello per ragionare qualitativamente sulle trasformazioni computazionali degli stati quantistici, viste come modelli di Kripke. 1In this thesis we propose several original results about lambda calculi and logics for quantum computing. The work is divided into three parts. The first one is devoted to recall the main notions about linear algebra, logics and quantum computing. The second and main part focalizes on quantum lambda calculi. We start with Q, a quantum lambda calculus with classical control. We study its classical properties, such as confluence and Subject Reduction. We go on with an important quantum property of Q, called standardization, and successively, we study the expressive power of the proposed calculus, by proving the equivalence with the computational model of quantum circuit families. From the calculus Q, subsequently a sublanguage of Q called SQ is defined and studied: SQ is inspired to the Soft Linear Logic and it is a quantum lambda calculus intrinsically poly-time. Since Q and SQ have not an explicit measurement operator in the syntax, an implicit measurement at the end of the computations is assumed. Measurement problems are explicitly studied in a third quantum lambda calculus called Q*, an extension of Q with a measurement operator. Starting from the observation that an explicit measurement operator breaks the deterministic evolution of the computation by importing a probabilistic behavior, new technical instruments, such as the probabilistic computations and the mixed states are defined. We prove a confluence result for the calculus, also for the relevant case of infinite computations. In the last part of the thesis, we propose two labeled modal deduction systems able to describe quantum computations from a qualitative point of view. The two systems, called respectively MSQS and MSpQS, represent a starting point toward a new model to deal (in a qualitative way) with computational quantum structures, seen as Kripke models.

    Sequent Calculus Representations for Quantum Circuits

    Get PDF
    When considering a sequent-style proof system for quantum programs, there are certain elements of quantum mechanics that we may wish to capture, such as phase, dynamics of unitary transformations, and measurement probabilities. Traditional quantum logics which focus primarily on the abstract orthomodular lattice theory and structures of Hilbert spaces have not satisfactorily captured some of these elements. We can start from 'scratch' in an attempt to conceptually characterize the types of proof rules which should be in a system that represents elements necessary for quantum algorithms. This present work attempts to do this from the perspective of the quantum circuit model of quantum computation. A sequent calculus based on single quantum circuits is suggested, and its ability to incorporate important conceptual and dynamic aspects of quantum computing is discussed. In particular, preserving the representation of phase helps illustrate the role of interference as a resource in quantum computation. Interference also provides an intuitive basis for a non-monotonic calculus
    corecore