5,071 research outputs found

    Connecting photometric and spectroscopic granulation signals with CHEOPS and ESPRESSO

    Get PDF
    Context. Stellar granulation generates fluctuations in photometric and spectroscopic data whose properties depend on the stellar type, composition, and evolutionary state. Characterizing granulation is key for understanding stellar atmospheres and detecting planets. Aims. We aim to detect the signatures of stellar granulation, link spectroscopic and photometric signatures of convection for main-sequence stars, and test predictions from 3D hydrodynamic models. Methods. For the first time, we observed two bright stars (Teff = 5833 and 6205 K) with high-precision observations taken simultaneously with CHEOPS and ESPRESSO. We analyzed the properties of the stellar granulation signal in each individual dataset. We compared them to Kepler observations and 3D hydrodynamic models. While isolating the granulation-induced changes by attenuating and filtering the p-mode oscillation signals, we studied the relationship between photometric and spectroscopic observables. Results. The signature of stellar granulation is detected and precisely characterized for the hotter F star in the CHEOPS and ESPRESSO observations. For the cooler G star, we obtain a clear detection in the CHEOPS dataset only. The TESS observations are blind to this stellar signal. Based on CHEOPS observations, we show that the inferred properties of stellar granulation are in agreement with both Kepler observations and hydrodynamic models. Comparing their periodograms, we observe a strong link between spectroscopic and photometric observables. Correlations of this stellar signal in the time domain (flux versus radial velocities, RV) and with specific spectroscopic observables (shape of the cross-correlation functions) are however difficult to isolate due to S/N dependent variations. Conclusions. In the context of the upcoming PLATO mission and the extreme precision RV surveys, a thorough understanding of the properties of the stellar granulation signal is needed. The CHEOPS and ESPRESSO observations pave the way for detailed analyses of this stellar process

    Composite Disturbance Filtering: A Novel State Estimation Scheme for Systems With Multi-Source, Heterogeneous, and Isomeric Disturbances

    Full text link
    State estimation has long been a fundamental problem in signal processing and control areas. The main challenge is to design filters with ability to reject or attenuate various disturbances. With the arrival of big data era, the disturbances of complicated systems are physically multi-source, mathematically heterogenous, affecting the system dynamics via isomeric (additive, multiplicative and recessive) channels, and deeply coupled with each other. In traditional filtering schemes, the multi-source heterogenous disturbances are usually simplified as a lumped one so that the "single" disturbance can be either rejected or attenuated. Since the pioneering work in 2012, a novel state estimation methodology called {\it composite disturbance filtering} (CDF) has been proposed, which deals with the multi-source, heterogenous, and isomeric disturbances based on their specific characteristics. With the CDF, enhanced anti-disturbance capability can be achieved via refined quantification, effective separation, and simultaneous rejection and attenuation of the disturbances. In this paper, an overview of the CDF scheme is provided, which includes the basic principle, general design procedure, application scenarios (e.g. alignment, localization and navigation), and future research directions. In summary, it is expected that the CDF offers an effective tool for state estimation, especially in the presence of multi-source heterogeneous disturbances

    Lepton-Nucleus Interactions within Microscopic Approaches

    Full text link
    This review paper emphasizes the significance of microscopic calculations with quantified theoretical error estimates in studying lepton-nucleus interactions and their implications for electron-scattering and accelerator neutrino-oscillation measurements. We investigate two approaches: Green's Function Monte Carlo and the extended factorization scheme, utilizing realistic nuclear target spectral functions. In our study, we include relativistic effects in Green's Function Monte Carlo and validate the inclusive electron-scattering cross section on carbon using available data. We compare the flux folded cross sections for neutrino-Carbon scattering with T2K and MINERν\nuA experiments, noting the substantial impact of relativistic effects in reducing the theoretical curve strength when compared to MINERν\nuA data. Additionally, we demonstrate that quantum Monte Carlo-based spectral functions accurately reproduce the quasi-elastic region in electron-scattering data and T2K flux folded cross sections. By comparing results from Green's Function Monte Carlo and the spectral function approach, which share a similar initial target state description, we quantify errors associated with approximations in the factorization scheme and the relativistic treatment of kinematics in Green's Function Monte Carlo.Comment: 30 pages, 9 figure

    Artificial neural networks for predicting mechanical properties of crystalline polyamide12 via molecular dynamics simulations

    Full text link
    Predicting material properties of 3D printed polymer products is a challenge in additive manufacturing due to the highly localized and complex manufacturing process. The microstructure of 3D printed products is fundamentally different from the ones obtained by using conventional manufacturing processes, which makes the task even more difficult. As a first step of a systematic multiscale approach, in this work, we have developed an artificial neural network (ANN) to predict the mechanical properties of the crystalline form of Polyamide12 (PA12) based on data collected from molecular dynamics simulations. Using the machine learning approach, we are able to predict the stress-strain relations of PA12 once the information of the macroscale deformation gradient is provided as the input parameter to the ANN. We have shown that this is an efficient and accurate approach, which can provide a three-dimensional molecular-level anisotropic stress-strain relation of PA12 for any macroscale mechanics model, such as finite element modeling at arbitrary quadrature points.Comment: Submitted to Microstructures (Revised

    Proceedings of SIRM 2023 - The 15th European Conference on Rotordynamics

    Get PDF
    It was our great honor and pleasure to host the SIRM Conference after 2003 and 2011 for the third time in Darmstadt. Rotordynamics covers a huge variety of different applications and challenges which are all in the scope of this conference. The conference was opened with a keynote lecture given by Rainer Nordmann, one of the three founders of SIRM “Schwingungen in rotierenden Maschinen”. In total 53 papers passed our strict review process and were presented. This impressively shows that rotordynamics is relevant as ever. These contributions cover a very wide spectrum of session topics: fluid bearings and seals; air foil bearings; magnetic bearings; rotor blade interaction; rotor fluid interactions; unbalance and balancing; vibrations in turbomachines; vibration control; instability; electrical machines; monitoring, identification and diagnosis; advanced numerical tools and nonlinearities as well as general rotordynamics. The international character of the conference has been significantly enhanced by the Scientific Board since the 14th SIRM resulting on one hand in an expanded Scientific Committee which meanwhile consists of 31 members from 13 different European countries and on the other hand in the new name “European Conference on Rotordynamics”. This new international profile has also been emphasized by participants of the 15th SIRM coming from 17 different countries out of three continents. We experienced a vital discussion and dialogue between industry and academia at the conference where roughly one third of the papers were presented by industry and two thirds by academia being an excellent basis to follow a bidirectional transfer what we call xchange at Technical University of Darmstadt. At this point we also want to give our special thanks to the eleven industry sponsors for their great support of the conference. On behalf of the Darmstadt Local Committee I welcome you to read the papers of the 15th SIRM giving you further insight into the topics and presentations

    Journal of Computational and Applied Mechanics 18.

    Get PDF

    Data-driven exact model order reduction for computational multiscale methods to predict high-cycle fatigue-damage in short-fiber reinforced plastics

    Get PDF
    Motiviert durch die Entwicklung energieeffizienterer Maschinen und Transportmittel hat der Leichtbau in den letzten Jahren enorm an Wichtigkeit gewonnen. Eine wichtige Klasse der Leichtbaumaterialien sind die faserverstärkten Kunststoffe. In der vorliegenden Arbeit liegt der Fokus auf der Entwicklung und Bereitstellung von Materialmodellen zur Vorhersage des Ermüdungsverhaltens kurzglasfaserverstärkter Thermoplaste. Diese Materialien unterscheiden sich dabei durch ihre Aufschmelzbarkeit und ihrer damit einhergehenden besseren Recyclebarkeit von thermosetbasierten Materialien. Außerdem erlauben die Kurzglasfasern im Gegensatz zu Langfasern eine einfache und zeiteffiziente Herstellung komplexer Komponenten. Ermüdung ist ein wichtiger Versagensmechanismus in solchen Komponenten, insbesondere für Bauteile z.B. in Fahrzeugen, die vibrationsartigen Belastungen ausgesetzt sind. Durch die inherente Anisotropie des Materials sind die experimentelle Charakterisierung und Vorhersage dieses Versagensmechanismus jedoch äußerst zeitintensiv und stellen somit eine wesentliche Herausforderung im Entwicklungsprozess und für die breitere Anwendung solcher Bauteile dar. Daher ist die Entwicklung komplementärer simulativer Methoden von großem Interesse. Im Rahmen dieser Arbeit werden Methoden zur Vorhersage der Ermüdungsschädigung kurzglasfaserverstärkter Werkstoffe im Rahmen einer Multiskalenmethode entwickelt. Die in der Arbeit betrachteten Multiskalenmodelle bieten die Möglichkeit, allein anhand der experimentellen Charakterisierungen der Materialparameter der Konstituenten, d.h. Faser und Matrix, komplexe anisotrope Effekte des Verbundmaterials vorherzusagen. Der experimentelle Aufwand kann dadurch enorm reduziert werden. Dazu werden zunächst Materialmodelle für die Konstituenten des Komposits entwickelt. Mithilfe FFT-basierter rechnergestützter Homogenisierung wird daraus das Materialverhalten des Komposits für verschiedene Mikrostrukturen und Lastfälle vorhergesagt. Die vorberechneten Lastfälle auf Mikrostrukturebene werden mit datengetriebenen Methoden auf die Makroskala übertragen. Das ermöglicht eine effiziente Berechnung von Bauteilen in wenigen Stunden, wohingegen eine entsprechende Berechnung mit geometrischer Auflösung aller einzelnen Fasern der Mikrostruktur auf heutigen Computern viele Jahre dauern würden. Für die Matrix werden unterschiedliche Schädigungsmodelle untersucht. Ihre Vor- und Nachteile werden analysiert. Die Mikrostruktursimulationen geben einen Einblick in den Einfluss verschiedener statistischer Parameter wie Faserlängen und Faservolumengehalt auf das Kompositverhalten. Ein neues Modellordnungsreduktionsverfahren wird entwickelt und zur Simulation des Ermüdungsschädigungsverhaltens auf Bauteilebene angewandt. Weiter werden Modellerweiterungen zur Berücksichtigung des R-Wert-Verhältnisses und viskoelastischer Effekte in der Evolution der Ermüdungsschädigung entwickelt und mit experimentellen Ergebnissen validiert. Das entstandene Simulationsframework erlaubt nach Vorrechnungen auf einer geringen Menge von Mikrostrukturen und Lastfällen eine effiziente Makrosimulation eines Bauteils vorzunehmen. Dabei können Effekte wie Viskoelastizität und R-Wert-Abhängigkeit je nach gewünschter Modellierungstiefe berücksichtigt oder vernachlässigt werden, um immer das effizientste Modell, das alle relevanten Effekte abbildet, nutzen zu können
    • …
    corecore