18 research outputs found

    ๊ณ ์† DRAM ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ ์ „์•• ๋ฐ ์˜จ๋„์— ๋‘”๊ฐํ•œ ํด๋ก ํŒจ์Šค์™€ ์œ„์ƒ ์˜ค๋ฅ˜ ๊ต์ •๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ (๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต ๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2021. 2. ์ •๋•๊ท .To cope with problems caused by the high-speed operation of the dynamic random access memory (DRAM) interface, several approaches are proposed that are focused on the clock path of the DRAM. Two delay-locked loop (DLL) based schemes, a forwarded-clock (FC) receiver (RX) with self-tracking loop and a quadrature error corrector, are proposed. Moreover, an open-loop based scheme is presented for drift compensation in the clock distribution. The open-loop scheme consumes less power consumption and reduces design complexity. The FC RX uses DLLs to compensate for voltage and temperature (VT) drift in unmatched memory interfaces. The self-tracking loop consists of two-stage cascaded DLLs to operate in a DRAM environment. With the write training and the proposed DLL, the timing relationship between the data and the sampling clock is always optimal. The proposed scheme compensates for delay drift without relying on data transitions or re-training. The proposed FC RX is fabricated in 65-nm CMOS process and has an active area containing 4 data lanes of 0.0329 mm2. After the write training is completed at the supply voltage of 1 V, the measured timing margin remains larger than 0.31-unit interval (UI) when the supply voltage drifts in the range of 0.94 V and 1.06 V from the training voltage, 1 V. At the data rate of 6.4 Gb/s, the proposed FC RX achieves an energy efficiency of 0.45 pJ/bit. Contrary to the aforementioned scheme, an open-loop-based voltage drift compensation method is proposed to minimize power consumption and occupied area. The overall clock distribution is composed of a current mode logic (CML) path and a CMOS path. In the proposed scheme, the architecture of the CML-to-CMOS converter (C2C) and the inverter is changed to compensate for supply voltage drift. The bias generator provides bias voltages to the C2C and inverters according to supply voltage for delay adjustment. The proposed clock tree is fabricated in 40 nm CMOS process and the active area is 0.004 mm2. When the supply voltage is modulated by a sinusoidal wave with 1 MHz, 100 mV peak-to-peak swing from the center of 1.1 V, applying the proposed scheme reduces the measured root-mean-square (RMS) jitter from 3.77 psRMS to 1.61 psRMS. At 6 GHz output clock, the power consumption of the proposed scheme is 11.02 mW. A DLL-based quadrature error corrector (QEC) with a wide correction range is proposed for the DRAM whose clocks are distributed over several millimeters. The quadrature error is corrected by adjusting delay lines using information from the phase error detector. The proposed error correction method minimizes increased jitter due to phase error correction by setting at least one of the delay lines in the quadrature clock path to the minimum delay. In addition, the asynchronous calibration on-off scheme reduces power consumption after calibration is complete. The proposed QEC is fabricated in 40 nm CMOS process and has an active area of 0.048 mm2. The proposed QEC exhibits a wide correctable error range of 101.6 ps and the remaining phase errors are less than 2.18ยฐ from 0.8 GHz to 2.3 GHz clock. At 2.3 GHz, the QEC contributes 0.53 psRMS jitter. Also, at 2.3 GHz, the power consumption is reduced from 8.89 mW to 3.39 mW when the calibration is off.๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ๋™์  ๋žœ๋ค ์•ก์„ธ์Šค ๋ฉ”๋ชจ๋ฆฌ (DRAM)์˜ ์†๋„๊ฐ€ ์ฆ๊ฐ€ํ•จ์— ๋”ฐ๋ผ ํด๋ก ํŒจ์Šค์—์„œ ๋ฐœ์ƒํ•  ์ˆ˜ ์žˆ๋Š” ๋ฌธ์ œ์— ๋Œ€์ฒ˜ํ•˜๊ธฐ ์œ„ํ•œ ์„ธ ๊ฐ€์ง€ ํšŒ๋กœ๋“ค์„ ์ œ์•ˆํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ํšŒ๋กœ๋“ค ์ค‘ ๋‘ ๋ฐฉ์‹๋“ค์€ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„ (delay-locked loop) ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์˜€๊ณ  ๋‚˜๋จธ์ง€ ํ•œ ๋ฐฉ์‹์€ ๋ฉด์ ๊ณผ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์˜คํ”ˆ ๋ฃจํ”„ ๋ฐฉ์‹์„ ์‚ฌ์šฉํ•˜์˜€๋‹ค. DRAM์˜ ๋น„์ •ํ•ฉ ์ˆ˜์‹ ๊ธฐ ๊ตฌ์กฐ์—์„œ ๋ฐ์ดํ„ฐ ํŒจ์Šค์™€ ํด๋ก ํŒจ์Šค ๊ฐ„์˜ ์ง€์—ฐ ๋ถˆ์ผ์น˜๋กœ ์ธํ•ด ์ „์•• ๋ฐ ์˜จ๋„ ๋ณ€ํ™”์— ๋”ฐ๋ผ ์…‹์—… ํƒ€์ž„ ๋ฐ ํ™€๋“œ ํƒ€์ž„์ด ์ค„์–ด๋“œ๋Š” ๋ฌธ์ œ๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ์‚ฌ์šฉํ•˜์˜€๋‹ค. ์ œ์•ˆํ•œ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„ ํšŒ๋กœ๋Š” DRAM ํ™˜๊ฒฝ์—์„œ ๋™์ž‘ํ•˜๋„๋ก ๋‘ ๊ฐœ์˜ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋กœ ๋‚˜๋ˆ„์—ˆ๋‹ค. ๋˜ํ•œ ์ดˆ๊ธฐ ์“ฐ๊ธฐ ํ›ˆ๋ จ์„ ํ†ตํ•ด ๋ฐ์ดํ„ฐ์™€ ํด๋ก์„ ํƒ€์ด๋ฐ ๋งˆ์ง„ ๊ด€์ ์—์„œ ์ตœ์ ์˜ ์œ„์น˜์— ๋‘˜ ์ˆ˜ ์žˆ๋‹ค. ๋”ฐ๋ผ์„œ ์ œ์•ˆํ•˜๋Š” ๋ฐฉ์‹์€ ๋ฐ์ดํ„ฐ ์ฒœ์ด ์ •๋ณด๊ฐ€ ํ•„์š”ํ•˜์ง€ ์•Š๋‹ค. 65-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์€ 6.4 Gb/s์—์„œ 0.45 pJ/bit์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ฐ€์ง„๋‹ค. ๋˜ํ•œ 1 V์—์„œ ์“ฐ๊ธฐ ํ›ˆ๋ จ ๋ฐ ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ๊ณ ์ •์‹œํ‚ค๊ณ  0.94 V์—์„œ 1.06 V๊นŒ์ง€ ๊ณต๊ธ‰ ์ „์••์ด ๋ฐ”๋€Œ์—ˆ์„ ๋•Œ ํƒ€์ด๋ฐ ๋งˆ์ง„์€ 0.31 UI๋ณด๋‹ค ํฐ ๊ฐ’์„ ์œ ์ง€ํ•˜์˜€๋‹ค. ๋‹ค์Œ์œผ๋กœ ์ œ์•ˆํ•˜๋Š” ํšŒ๋กœ๋Š” ํด๋ก ๋ถ„ํฌ ํŠธ๋ฆฌ์—์„œ ์ „์•• ๋ณ€ํ™”๋กœ ์ธํ•ด ํด๋ก ํŒจ์Šค์˜ ์ง€์—ฐ์ด ๋‹ฌ๋ผ์ง€๋Š” ๊ฒƒ์„ ์•ž์„œ ์ œ์‹œํ•œ ๋ฐฉ์‹๊ณผ ๋‹ฌ๋ฆฌ ์˜คํ”ˆ ๋ฃจํ”„ ๋ฐฉ์‹์œผ๋กœ ๋ณด์ƒํ•˜์˜€๋‹ค. ๊ธฐ์กด ํด๋ก ํŒจ์Šค์˜ ์ธ๋ฒ„ํ„ฐ์™€ CML-to-CMOS ๋ณ€ํ™˜๊ธฐ์˜ ๊ตฌ์กฐ๋ฅผ ๋ณ€๊ฒฝํ•˜์—ฌ ๋ฐ”์ด์–ด์Šค ์ƒ์„ฑ ํšŒ๋กœ์—์„œ ์ƒ์„ฑํ•œ ๊ณต๊ธ‰ ์ „์••์— ๋”ฐ๋ผ ๋ฐ”๋€Œ๋Š” ๋ฐ”์ด์–ด์Šค ์ „์••์„ ๊ฐ€์ง€๊ณ  ์ง€์—ฐ์„ ์กฐ์ ˆํ•  ์ˆ˜ ์žˆ๊ฒŒ ํ•˜์˜€๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์˜ 6 GHz ํด๋ก์—์„œ์˜ ์ „๋ ฅ ์†Œ๋ชจ๋Š” 11.02 mW๋กœ ์ธก์ •๋˜์—ˆ๋‹ค. 1.1 V ์ค‘์‹ฌ์œผ๋กœ 1 MHz, 100 mV ํ”ผํฌ ํˆฌ ํ”ผํฌ๋ฅผ ๊ฐ€์ง€๋Š” ์‚ฌ์ธํŒŒ ์„ฑ๋ถ„์œผ๋กœ ๊ณต๊ธ‰ ์ „์••์„ ๋ณ€์กฐํ•˜์˜€์„ ๋•Œ ์ œ์•ˆํ•œ ๋ฐฉ์‹์—์„œ์˜ ์ง€ํ„ฐ๋Š” ๊ธฐ์กด ๋ฐฉ์‹์˜ 3.77 psRMS์—์„œ 1.61 psRMS๋กœ ์ค„์–ด๋“ค์—ˆ๋‹ค. DRAM์˜ ์†ก์‹ ๊ธฐ ๊ตฌ์กฐ์—์„œ ๋‹ค์ค‘ ์œ„์ƒ ํด๋ก ๊ฐ„์˜ ์œ„์ƒ ์˜ค์ฐจ๋Š” ์†ก์‹ ๋œ ๋ฐ์ดํ„ฐ์˜ ๋ฐ์ดํ„ฐ ์œ ํšจ ์ฐฝ์„ ๊ฐ์†Œ์‹œํ‚จ๋‹ค. ์ด๋ฅผ ํ•ด๊ฒฐํ•˜๊ธฐ ์œ„ํ•ด ์ง€์—ฐ๋™๊ธฐ๋ฃจํ”„๋ฅผ ๋„์ž…ํ•˜๊ฒŒ ๋˜๋ฉด ์ฆ๊ฐ€๋œ ์ง€์—ฐ์œผ๋กœ ์ธํ•ด ์œ„์ƒ์ด ๊ต์ •๋œ ํด๋ก์—์„œ ์ง€ํ„ฐ๊ฐ€ ์ฆ๊ฐ€ํ•œ๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” ์ฆ๊ฐ€๋œ ์ง€ํ„ฐ๋ฅผ ์ตœ์†Œํ™”ํ•˜๊ธฐ ์œ„ํ•ด ์œ„์ƒ ๊ต์ •์œผ๋กœ ์ธํ•ด ์ฆ๊ฐ€๋œ ์ง€์—ฐ์„ ์ตœ์†Œํ™”ํ•˜๋Š” ์œ„์ƒ ๊ต์ • ํšŒ๋กœ๋ฅผ ์ œ์‹œํ•˜์˜€๋‹ค. ๋˜ํ•œ ์œ ํœด ์ƒํƒœ์—์„œ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ์œ„์ƒ ์˜ค์ฐจ๋ฅผ ๊ต์ •ํ•˜๋Š” ํšŒ๋กœ๋ฅผ ์ž…๋ ฅ ํด๋ก๊ณผ ๋น„๋™๊ธฐ์‹์œผ๋กœ ๋Œ ์ˆ˜ ์žˆ๋Š” ๋ฐฉ๋ฒ• ๋˜ํ•œ ์ œ์•ˆํ•˜์˜€๋‹ค. 40-nm CMOS ๊ณต์ •์„ ์ด์šฉํ•˜์—ฌ ๋งŒ๋“ค์–ด์ง„ ์นฉ์˜ ์œ„์ƒ ๊ต์ • ๋ฒ”์œ„๋Š” 101.6 ps์ด๊ณ  0.8 GHz ๋ถ€ํ„ฐ 2.3 GHz๊นŒ์ง€์˜ ๋™์ž‘ ์ฃผํŒŒ์ˆ˜ ๋ฒ”์œ„์—์„œ ์œ„์ƒ ๊ต์ •๊ธฐ์˜ ์ถœ๋ ฅ ํด๋ก์˜ ์œ„์ƒ ์˜ค์ฐจ๋Š” 2.18ยฐ๋ณด๋‹ค ์ž‘๋‹ค. ์ œ์•ˆํ•˜๋Š” ์œ„์ƒ ๊ต์ • ํšŒ๋กœ๋กœ ์ธํ•ด ์ถ”๊ฐ€๋œ ์ง€ํ„ฐ๋Š” 2.3 GHz์—์„œ 0.53 psRMS์ด๊ณ  ๊ต์ • ํšŒ๋กœ๋ฅผ ๊ป์„ ๋•Œ ์ „๋ ฅ ์†Œ๋ชจ๋Š” ๊ต์ • ํšŒ๋กœ๊ฐ€ ์ผœ์กŒ์„ ๋•Œ์ธ 8.89 mW์—์„œ 3.39 mW๋กœ ์ค„์–ด๋“ค์—ˆ๋‹ค.Chapter 1 Introduction 1 1.1 Motivation 1 1.2 Thesis Organization 4 Chapter 2 Background on DRAM Interface 5 2.1 Overview 5 2.2 Memory Interface 7 Chapter 3 Background on DLL 11 3.1 Overview 11 3.2 Building Blocks 15 3.2.1 Delay Line 15 3.2.2 Phase Detector 17 3.2.3 Charge Pump 19 3.2.4 Loop filter 20 Chapter 4 Forwarded-Clock Receiver with DLL-based Self-tracking Loop for Unmatched Memory Interfaces 21 4.1 Overview 21 4.2 Proposed Separated DLL 25 4.2.1 Operation of the Proposed Separated DLL 27 4.2.2 Operation of the Digital Loop Filter in DLL 31 4.3 Circuit Implementation 33 4.4 Measurement Results 37 4.4.1 Measurement Setup and Sequence 38 4.4.2 VT Drift Measurement and Simulation 40 Chapter 5 Open-loop-based Voltage Drift Compensation in Clock Distribution 46 5.1 Overview 46 5.2 Prior Works 50 5.3 Voltage Drift Compensation Method 52 5.4 Circuit Implementation 57 5.5 Measurement Results 61 Chapter 6 Quadrature Error Corrector with Minimum Total Delay Tracking 68 6.1 Overview 68 6.2 Prior Works 70 6.3 Quadrature Error Correction Method 73 6.4 Circuit Implementation 82 6.5 Measurement Results 88 Chapter 7 Conclusion 96 Bibliography 98 ์ดˆ๋ก 102Docto

    HBM3์—์„œ DQS ์‹ ํ˜ธ๋ฅผ ์œ„ํ•œ 4-์œ„์ƒ ์—๋Ÿฌ ๊ต์ •๊ธฐ์˜ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(์„์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022.2. ๊น€์žฌํ•˜.As the speed of high bandwidth memory (HBM) increased, the skew of the quad-rature data strobe (DQS) signals started to affect the internal operation of HBM. On-ly the skew of the quadrature clock signals sent from memory needed to be correct-ed before. Previously suggested quadrature error correctors are applicable only to periodic clock signals and not to aperiodic DQS signals. Therefore, a new circuit for correcting phase skew of DQS signals is needed. This thesis presents a design methodology of a quadrature error corrector for HBM3 that can correct the phase skew of DQS signals. The proposed quadrature error corrector can correct aperiodic signals using a clock signal of the same fre-quency, which detects 1/4 point of the clock period in a capacitor charging method. The quadrature error corrector uses a 4:1 ratio capacitor to detect whether the phase difference of DQS signals is 1/4 of clock period. The quadrature error is corrected by adjusting delay lines using information from the phase error detector. After the calibration, the feedback loop is off to save power. Implemented in 40-nm CMOS, the post-layout simulation results demonstrate the operation range from 1.0 to 2-GHz and a corrected phase error of less than 8.69-ps for the DQS signal while con-suming maximum power of 2.42-mW from a 1.6-GHz frequency and a 1.1-V supply.๊ณ ๋Œ€์—ญํญ ๋ฉ”๋ชจ๋ฆฌ(High Bandwidth Memory)์˜ ์†๋„๊ฐ€ ๋นจ๋ผ์ง€๋ฉด์„œ ์ฟผ๋“œ๋Ÿฌ์ณ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ(DQS) ์‹ ํ˜ธ์˜ ์Šคํ๊ฐ€ ๋‚ด๋ถ€ ๋™์ž‘์— ์˜ํ–ฅ์„ ๋ฏธ์น˜๊ธฐ ์‹œ์ž‘ํ•œ๋‹ค. ์ด์ „์—๋Š” ๋ฉ”๋ชจ๋ฆฌ์—์„œ ๋‚ด๋ณด๋‚ด๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ํด๋ฝ ์‹ ํ˜ธ์˜ ์Šคํ๋งŒ ์ˆ˜์ •ํ•˜๋ฉด ๋˜์—ˆ๋‹ค. ์ด์ „์— ์ œ์•ˆ๋œ ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” ์ฃผ๊ธฐ์ ์ธ ํด๋ฝ ์‹ ํ˜ธ์—๋งŒ ์ ์šฉ ๊ฐ€๋Šฅํ•˜๋ฉฐ ๋น„์ฃผ๊ธฐ์ ์ธ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์—๋Š” ์ ์šฉํ•  ์ˆ˜ ์—†๋‹ค. ๋”ฐ๋ผ์„œ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ๊ต์ •ํ•˜๊ธฐ ์œ„ํ•œ ์ƒˆ๋กœ์šด ํšŒ๋กœ๊ฐ€ ํ•„์š”ํ•˜๋‹ค. ๋ณธ ๋…ผ๋ฌธ์—์„œ๋Š” HBM3์—์„œ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ์ˆ˜์ •ํ•  ์ˆ˜ ์žˆ๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ์˜ ์„ค๊ณ„ ๋ฐฉ๋ฒ•์„ ์ œ์•ˆํ•œ๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” ๋™์ผํ•œ ์ฃผํŒŒ์ˆ˜์˜ ํด๋ฝ ์‹ ํ˜ธ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ์ปคํŒจ์‹œํ„ฐ ์ถฉ์ „ ๋ฐฉ์‹์œผ๋กœ ๋น„์ฃผ๊ธฐ์ ์ธ ์‹ ํ˜ธ๋ฅผ ๊ต์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ ๊ต์ •๊ธฐ๋Š” 4:1 ๋น„์œจ์˜ ์ปคํŒจ์‹œํ„ฐ๋ฅผ ์‚ฌ์šฉํ•˜์—ฌ ๋ฐ์ดํ„ฐ ์ŠคํŠธ๋กœ๋ธŒ ์‹ ํ˜ธ์˜ ์œ„์ƒ ์ฐจ์ด๊ฐ€ ํด๋ฝ ์ฃผ๊ธฐ์˜ 1/4์ธ์ง€ ์—ฌ๋ถ€๋ฅผ ๊ฐ์ง€ํ•œ๋‹ค. ์ฟผ๋“œ๋Ÿฌ์ณ ์—๋Ÿฌ๋Š” ์œ„์ƒ ์—๋Ÿฌ๋ฅผ ๊ฐ์ง€ํ•œ ์ •๋ณด๋ฅผ ์ด์šฉํ•˜์—ฌ ๋””์ง€ํ„ธ ์ œ์–ด ๋”œ๋ ˆ์ด ๋ผ์ธ(digitally con-trolled delay line)์„ ํ†ตํ•ด ๋ณด์ •๋œ๋‹ค. ๋ณด์ • ํ›„์—๋Š” ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ค„์ด๊ธฐ ์œ„ํ•ด ๋””์ง€ํ„ธ ์ œ์–ด ๋”œ๋ ˆ์ด ๋ผ์ธ๋งŒ ๋™์ž‘์‹œํ‚ค๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. 40 ๋‚˜๋…ธ๋ฏธํ„ฐ ๊ณต์ •์œผ๋กœ ๊ตฌํ˜„๋˜์—ˆ์œผ๋ฉฐ, ์‹œ๋ฎฌ๋ ˆ์ด์…˜ ๊ฒฐ๊ณผ 1 โ€“ 2 GHz์—์„œ ๋™์ž‘ ๊ฐ€๋Šฅํ•˜๋ฉฐ 1.6 GHz์™€ 1.1 V ๊ณต๊ธ‰ ์ „์›์œผ๋กœ ๋™์ž‘ํ•˜์˜€์„ ๋•Œ ์ตœ๋Œ€ 2.42 mW์˜ ์ „๋ ฅ์„ ์†Œ๋น„ํ•˜๋ฉฐ ๋ณด์ • ๊ฒฐ๊ณผ 8.69 ps ์ดํ•˜์˜ ์˜ค๋ฅ˜๋ฅผ ๋‚˜ํƒ€๋‚ธ๋‹ค.I. Abstract 3 II. Contents 4 III. List of figures 6 V. List of tables 8 Chapter 1. Introduction 9 1.1 Motivation 9 1.2 Thesis organization 12 Chapter 2. Operation and architecture of the quadrature error corrector 13 2.1 Principles of operation 13 2.2 Overall structure 16 Chapter 3. Circuit implementation 18 3.1 Pulse-width detector 18 3.1.1 Three modes of pulse-width detector 18 3.1.2 Design consideration 21 3.1.3 Current digital to analog converter 24 3.1.4 Switch logics 27 3.1.5 Simulation of pulse-width detector 28 3.2 Pulse generator 31 3.3 Digitally controlled delay lines 34 3.4 DIV8 & 3-bit counter 37 3.5 Digital loop filter 39 Chapter 4. Simulation results 41 4.1 Test circuits 41 4.1.1 DQS generator 41 4.1.2 Sampler 43 4.1.3 Test MUX 44 4.2 Chip layout 45 4.3 Simulation results 47 4.4 Performance summary 53 Chapter 5. Conclusion 54 Bibliography 55 Abstract in korean 57์„

    ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ 4 ๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ ์ฟผํ„ฐ ๋ ˆ์ดํŠธ ์ˆ˜์‹ ๊ธฐ ์„ค๊ณ„

    Get PDF
    ํ•™์œ„๋…ผ๋ฌธ(๋ฐ•์‚ฌ) -- ์„œ์šธ๋Œ€ํ•™๊ต๋Œ€ํ•™์› : ๊ณต๊ณผ๋Œ€ํ•™ ์ „๊ธฐยท์ •๋ณด๊ณตํ•™๋ถ€, 2022. 8. ๊น€์ˆ˜ํ™˜.๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค๋ฅผ ์œ„ํ•œ 4 ๋ ˆ๋ฒจ ํŽ„์Šค ์ง„ํญ ๋ณ€์กฐ (PAM-4) ์ˆ˜์‹ ๊ธฐ์™€ ์ง๊ต ํด๋ก์„ ์ƒ์„ฑํ•˜๋Š” ์ง๊ต ์‹ ํ˜ธ ๋ณด์ •๊ธฐ๋ฅผ ์ œ์•ˆ๋œ๋‹ค. ๋ฐ์ดํ„ฐ ์„ผํ„ฐ์—์„œ ์ฆ๊ฐ€ํ•˜๋Š” IP ํŠธ๋ž˜ํ”ฝ์€ ๊ณ ์† ๋ฐ ์ €์ „๋ ฅ ๋ฉ”๋ชจ๋ฆฌ ์ธํ„ฐํŽ˜์ด์Šค์— ๋Œ€ํ•œ ์ˆ˜์š”๋ฅผ ์ฆ๊ฐ€์‹œ์ผœ์™”๋‹ค. ์ด๋Ÿฌํ•œ ์š”๊ตฌ๋ฅผ ๋งŒ์กฑ์‹œํ‚ค๊ธฐ ์œ„ํ•ด ํด๋Ÿญ ๋ฐ ๋‚˜์ดํ€ด์ŠคํŠธ ์ฃผํŒŒ์ˆ˜๋ฅผ ๋†’์ด์ง€ ์•Š๊ณ ๋„ ๋ฐ์ดํ„ฐ ์ „์†ก๋ฅ ์„ ๋†’์ผ ์ˆ˜ ์žˆ๋Š” PAM-4 ์‹ ํ˜ธ๊ฐ€ ์ฃผ๋ชฉ์„ ๋ฐ›๊ณ  ์žˆ๋‹ค. PAM-4 ์‹ ํ˜ธ๋Š” ์ œ๋กœ ๋น„ ๋ณต๊ท€ ์‹ ํ˜ธ (NRZ) ๋ณด๋‹ค 3๋ฐฐ ๋‚ฎ์€ ์ˆ˜์ง ๋งˆ์ง„์„ ๊ฐ€์ง€๋ฉฐ, ์ด๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ์ดํ€„๋ผ์ด์ € ๋‚ด ์Šฌ๋ผ์ด์Šค์˜ ํด๋Ÿญ-ํ ๋”œ๋ ˆ์ด๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค๋ฉฐ, ์ด๋กœ ์ธํ•ด PAM-4 ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ์ดํ€„๋ผ์ด์ €์˜ ์„ฑ๋Šฅ์„ ์ œํ•œํ•˜๋Š” ์š”์ธ์ด๋‹ค. ๋ณธ ์—ฐ๊ตฌ์—์„œ๋Š” ์ธ๋ฒ„ํ„ฐ ๊ธฐ๋ฐ˜์˜ ํ•ฉ์‚ฐ๊ธฐ๋ฅผ ์ด์šฉ, ์„ ํƒ์ ์œผ๋กœ ์‹ ํ˜ธ๋ฅผ ์ฆํญ์‹œํ‚ค๋Š” ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ์ดํ€„๋ผ์ด์ €๋ฅผ ์‚ฌ์šฉํ•จ์œผ๋กœ์จ ์Šฌ๋ผ์ด์„œ์˜ ์ „๋ ฅ ์†Œ๋ชจ๋ฅผ ์ฆ๊ฐ€์‹œํ‚ค์ง€ ์•Š์œผ๋ฉด์„œ ์Šฌ๋ผ์ด์„œ์˜ ํด๋Ÿญ-ํ ๋”œ๋ ˆ์ด๋ฅผ ์ค„์ผ ์ˆ˜ ์žˆ๋‹ค. ๋˜ํ•œ, ์ ์‘ํ˜• ์ง€์—ฐ ์ด๋“ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์ง๊ต ์‹ ํ˜ธ ๋ณด์ •๊ธฐ๋Š” ๋†’์€ ์ •ํ™•๋„์™€ ๋น ๋ฅธ ์Šคํ ๋ณด์ •์œผ๋กœ ์ฟผ๋“œ๋Ÿฌ์ฒ˜ ํด๋Ÿญ ๊ฐ„์˜ ์Šคํ๋ฅผ ๊ต์ •ํ•  ์ˆ˜ ์žˆ๋‹ค. ์„ ํƒ์  ๋ˆˆ ์ฆํญ ๊ฒฐ์ • ํ”ผ๋“œ๋ฐฑ ์ดํ€„๋ผ์ด์ €์™€ ์ ์‘ํ˜• ์ง€์—ฐ ์ด๋“ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์ง๊ต ์‹ ํ˜ธ ๋ณด์ •๊ธฐ์˜ ์„ฑ๋Šฅ์„ ๊ฒ€์ฆํ•˜๊ธฐ ์œ„ํ•ด ํ”„๋กœํ† ํƒ€์ž… ์นฉ์„ ์ œ์ž‘ํ•˜์˜€๋‹ค. ์ œ์ž‘๋œ ์นฉ์€ 65 nm CMOS ๊ณต์ •์œผ๋กœ ์ œ์ž‘๋˜์—ˆ๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ์€ 24 Gb/s/pin ์—์„œ 10-12 ์˜ ๋น„ํŠธ ์—๋Ÿฌ์œจ์„ 100 mUI ์˜ ์‹ ํ˜ธ ๋„ˆ๋น„๋กœ ๋‹ฌ์„ฑํ•˜์˜€๋‹ค. ํ”„๋กœํ† ํƒ€์ž… ์นฉ ๋‚ด PAM-4 ์ˆ˜์‹ ๊ธฐ๋Š” 0.73 pJ/b ์˜ ์—๋„ˆ์ง€ ํšจ์œจ์„ ๊ฐ–๋Š”๋‹ค. ๋˜ํ•œ ์ ์‘ํ˜• ์ง€์—ฐ ์ด๋“ ์ปจํŠธ๋กค๋Ÿฌ๋ฅผ ํฌํ•จํ•˜๋Š” ์ง๊ต ์‹ ํ˜ธ ๋ณด์ •๊ธฐ๋Š” 3 GHz ์ฟผ๋“œ๋Ÿฌ์ฒ˜ ํด๋Ÿญ ๊ฐ„ ์ตœ๋Œ€ 21.2 ps ์˜ ์Šคํ๋ฅผ 0.8 ps ๊นŒ์ง€ ์ค„์ผ ์ˆ˜ ์žˆ์œผ๋ฉฐ, ์ด ๋•Œ 76.9 ns ์˜ ๊ต์ • ์‹œ๊ฐ„์„ ๊ฐ–๋Š”๋‹ค. ์ œ์•ˆํ•˜๋Š” ์ง๊ต ์‹ ํ˜ธ ๋ณด์ •๊ธฐ๋Š” 3 GHz ์—์„œ 2.15 mW/GHz ์˜ ์ „๋ ฅ ํšจ์œจ์„ ๊ฐ–๋Š”๋‹ค.A four-level pulse amplitude modulation (PAM-4) receiver, and a quadrature signal corrector (QSC) that generates quadrature clocks for memory interfaces is presented. Increasing IP traffic in data centers has increased the demand for high-speed and low-power memory interfaces. To satisfy this demand, PAM-4 signaling, which can increase data-rate without increasing clock and Nyquist frequency, is received considerable attention. PAM- signaling has vertical which three times lower than non-return-to-zero (NRZ) signaling, which makes the clock-to-Q delay of the slicer in the decision feedback equalizer (DFE) increases. This makes the DFE difficult to satisfy the timing constraint. In this paper, by using a DFE with inverter-based summers, the clock-to-Q delay of the slicer can be reduced without increasing the power consumption of the slicers. Also, the QSC using an adaptive delay gain controller can correct the skew between the quadrature clock with low skew and short correction time. The prototype receiver including the DFE with the inverter-based summer and the QSC using the adaptive delay gain controller was fabricated in 65 nm CMOS process. The prototype chip can achieve a bit error rate (BER) of 10-12 at 24 Gb/s/pin, and at this time, an eye width of 100 mUI is secured. The efficiency of the receiver is 0.73 pJ/b. In addition, the QSC cna reduce the maximum 21.2 ps of skew between 3 GHz quadrature clocks to 0.8 ps and has a correction time of 76.9 ns. The efficiency of the QSC is 2.15 mW/GHz.ABSTRACT 1 CONTENTS 3 LIST OF FIGURES 5 LIST OF TABLE 9 CHAPTER 1 1 INTRODUCTION 1 1.1 MOTIVATION 1 1.2 PAM-4 SIGNALING 7 1.2.1 DESIGN CONSIDERATIONS ON PAM-4 RECEIVER 10 1.2.2 PRIOR WORKS 14 1.3 QUARTER-RATE ARCHITECTURE 18 1.3.1 DESIGN CONSIDERATION ON QUARTER-RATE ARCHITECTURE 20 1.3.2 PRIOR WORKS 25 1.4 SUMMARY 28 1.5 THESIS ORGANIZATION 30 CHAPTER 2 31 CONCEPTS OF DFE WITH INVERTER-BASED SUMMER 31 2.1 CONCEPTUAL ARCHITECTURE OF DFE WITH INVERTER-BASED SUMMER 32 2.2 DESIGN CONSIDERATION OF INVERTER-BASED SUMMER 37 CHAPTER 3 41 CONCEPTS OF QUADRATURE SIGNAL CORRECTOR USING ADAPTIVE DELAY GAIN CONTROLLER 41 3.1 OPERATION OF PROPOSED QUADRATURE SIGNAL CORRECTOR 42 3.2 LOOP FILTER INCLUDING ADAPTIVE DELAY GAIN CONTROLLER 45 CHAPTER 4 48 ARCHITECTURE AND IMPLEMENTATION 48 4.1 OVERALL ARCHITECTURE 49 4.2 ANALOG FRONT END 52 4.3 DECISION FEEDBACK EQUALIZER WITH INVERTER-BASED SUMMER 54 4.4 CLOCK PATH 62 4.5 QUADRATURE SIGNAL CORRECTOR WITH ADAPTIVE DELAY GAIN CONTROLLER 63 CHAPTER 5 70 EXPERIMENTAL RESULTS 70 5.1 EXPERIMENTAL SETUP 70 5.2 EXPERIMENTAL RESULTS 74 5.2.1 MEASUREMENT RESULTS OF PAM-4 RECEIVER WITH DECISION FEEDBACK EQUALIZER USING INVERTER-BASED SUMMER 74 5.2.2 MEASUREMENT RESULTS OF QUADRATURE SIGNAL CORRECTOR USING ADAPTIVE DELAY GAIN CONTROLLER 77 CHAPTER 6 83 CONCLUSION 83 BIBLIOGRAPHY 86๋ฐ•

    Advances in ultra-low contact force nanometric surface metrology

    Get PDF
    This dissertation describes the theoretical design, practical construction and experimental use of a novel profiler intended to bridge the gap between atomic force microscopes (AFMs) and conventional stylus instruments. More specifically, it may be regarded as a hybrid instrument, combining the long-range of stylus instruments with the low contact force, high-speed operation of the AFM. The heart of the new instrument is a miniature capacitance-based force probe, constructed of glass and ceramic materials chosen primarily for thermal stability. This force probe can sense forces encompassing the range from atomic force levels (10ยฏ7 N) to stylus instrument levels (10-โด N). Probes used in subsequent studies range from ISO standard spherical diamond styli (radii 2, 5 and 10 แถ™m) to 20 nm radius Berkovich diamond tips. A custom designed low excitation voltage, high frequency capacitance gage, used to monitor the sub-nanometer displacements of the force probe is presented. To measure surface profiles, the force probe is mounted on a PZT actuator and, much like an AFM, follows a contour of constant force under servo control. The specimen traverses underneath the force probe on an ultra-precision kinematic slideway using a flat glass datum surface and polymeric dry bearings. A novel, inexpensive laser interferometer used to monitor specimen position and control data acquisition of the profiler is described. In this manner, profiler repeatability is enhanced to the nanometer level in two axes. Profiler performance is tested for repeatability, noise force servo bandwidth and temperature stability. A force servo response bandwidth of 300 Hz was ascertained. This compares favorably with the sub- ten Hz responses of stylus instruments. A series of experiments designed to validate the high-speed performance of the profiler are presented. This high speed operation is some 10 to 100 times faster than conventional stylus instruments. Dynamic, non-linear interactions between the stylus tip and specimen are first derived and then examined experimentally. These dynamic interactions may eventually make it possible to measure specimen internal damping and interface stiffness or mechanical properties at the point contact level

    Mu2e Technical Design Report

    Full text link
    The Mu2e experiment at Fermilab will search for charged lepton flavor violation via the coherent conversion process mu- N --> e- N with a sensitivity approximately four orders of magnitude better than the current world's best limits for this process. The experiment's sensitivity offers discovery potential over a wide array of new physics models and probes mass scales well beyond the reach of the LHC. We describe herein the preliminary design of the proposed Mu2e experiment. This document was created in partial fulfillment of the requirements necessary to obtain DOE CD-2 approval.Comment: compressed file, 888 pages, 621 figures, 126 tables; full resolution available at http://mu2e.fnal.gov; corrected typo in background summary, Table 3.

    Cumulative index to NASA Tech Briefs, 1986-1990, volumes 10-14

    Get PDF
    Tech Briefs are short announcements of new technology derived from the R&D activities of the National Aeronautics and Space Administration. These briefs emphasize information considered likely to be transferrable across industrial, regional, or disciplinary lines and are issued to encourage commercial application. This cumulative index of Tech Briefs contains abstracts and four indexes (subject, personal author, originating center, and Tech Brief number) and covers the period 1986 to 1990. The abstract section is organized by the following subject categories: electronic components and circuits, electronic systems, physical sciences, materials, computer programs, life sciences, mechanics, machinery, fabrication technology, and mathematics and information sciences

    NASA Tech Briefs, March 1992

    Get PDF
    Topics include: New Product Ideas; Electronic Components and Circuits; Electronic Systems; Physical Sciences; Materials; Computer Programs; Mechanics; Machinery; Fabrication Technology; Mathematics and Information Sciences; Life Sciences

    Technology 2001: The Second National Technology Transfer Conference and Exposition, volume 1

    Get PDF
    Papers from the technical sessions of the Technology 2001 Conference and Exposition are presented. The technical sessions featured discussions of advanced manufacturing, artificial intelligence, biotechnology, computer graphics and simulation, communications, data and information management, electronics, electro-optics, environmental technology, life sciences, materials science, medical advances, robotics, software engineering, and test and measurement
    corecore