952 research outputs found

    A quadratically convergent algorithm for structured low-rank approximation

    No full text

    Large-scale Binary Quadratic Optimization Using Semidefinite Relaxation and Applications

    Full text link
    In computer vision, many problems such as image segmentation, pixel labelling, and scene parsing can be formulated as binary quadratic programs (BQPs). For submodular problems, cuts based methods can be employed to efficiently solve large-scale problems. However, general nonsubmodular problems are significantly more challenging to solve. Finding a solution when the problem is of large size to be of practical interest, however, typically requires relaxation. Two standard relaxation methods are widely used for solving general BQPs--spectral methods and semidefinite programming (SDP), each with their own advantages and disadvantages. Spectral relaxation is simple and easy to implement, but its bound is loose. Semidefinite relaxation has a tighter bound, but its computational complexity is high, especially for large scale problems. In this work, we present a new SDP formulation for BQPs, with two desirable properties. First, it has a similar relaxation bound to conventional SDP formulations. Second, compared with conventional SDP methods, the new SDP formulation leads to a significantly more efficient and scalable dual optimization approach, which has the same degree of complexity as spectral methods. We then propose two solvers, namely, quasi-Newton and smoothing Newton methods, for the dual problem. Both of them are significantly more efficiently than standard interior-point methods. In practice, the smoothing Newton solver is faster than the quasi-Newton solver for dense or medium-sized problems, while the quasi-Newton solver is preferable for large sparse/structured problems. Our experiments on a few computer vision applications including clustering, image segmentation, co-segmentation and registration show the potential of our SDP formulation for solving large-scale BQPs.Comment: Fixed some typos. 18 pages. Accepted to IEEE Transactions on Pattern Analysis and Machine Intelligenc

    To be or not to be intrusive? The solution of parametric and stochastic equations - the "plain vanilla" Galerkin case

    Get PDF
    In parametric equations - stochastic equations are a special case - one may want to approximate the solution such that it is easy to evaluate its dependence of the parameters. Interpolation in the parameters is an obvious possibility, in this context often labeled as a collocation method. In the frequent situation where one has a "solver" for the equation for a given parameter value - this may be a software component or a program - it is evident that this can independently solve for the parameter values to be interpolated. Such uncoupled methods which allow the use of the original solver are classed as "non-intrusive". By extension, all other methods which produce some kind of coupled system are often - in our view prematurely - classed as "intrusive". We show for simple Galerkin formulations of the parametric problem - which generally produce coupled systems - how one may compute the approximation in a non-intusive way

    A quadratically convergent proximal algorithm for nonnegative tensor decomposition

    Full text link
    The decomposition of tensors into simple rank-1 terms is key in a variety of applications in signal processing, data analysis and machine learning. While this canonical polyadic decomposition (CPD) is unique under mild conditions, including prior knowledge such as nonnegativity can facilitate interpretation of the components. Inspired by the effectiveness and efficiency of Gauss-Newton (GN) for unconstrained CPD, we derive a proximal, semismooth GN type algorithm for nonnegative tensor factorization. If the algorithm converges to the global optimum, we show that QQ-quadratic convergence can be obtained in the exact case. Global convergence is achieved via backtracking on the forward-backward envelope function. The QQ-quadratic convergence is verified experimentally, and we illustrate that using the GN step significantly reduces number of (expensive) gradient computations compared to proximal gradient descent
    corecore