117 research outputs found

    Towards consistent visual-inertial navigation

    Get PDF
    Visual-inertial navigation systems (VINS) have prevailed in various applications, in part because of the complementary sensing capabilities and decreasing costs as well as sizes. While many of the current VINS algorithms undergo inconsistent estimation, in this paper we introduce a new extended Kalman filter (EKF)-based approach towards consistent estimates. To this end, we impose both state-transition and obervability constraints in computing EKF Jacobians so that the resulting linearized system can best approximate the underlying nonlinear system. Specifically, we enforce the propagation Jacobian to obey the semigroup property, thus being an appropriate state-transition matrix. This is achieved by parametrizing the orientation error state in the global, instead of local, frame of reference, and then evaluating the Jacobian at the propagated, instead of the updated, state estimates. Moreover, the EKF linearized system ensures correct observability by projecting the most-accurate measurement Jacobian onto the observable subspace so that no spurious information is gained. The proposed algorithm is validated by both Monte-Carlo simulation and real-world experimental tests.United States. Office of Naval Research (N00014-12-1- 0093, N00014-10-1-0936, N00014-11-1-0688, and N00014-13-1-0588)National Science Foundation (U.S.) (Grant IIS-1318392

    Inertial navigation aided by simultaneous loacalization and mapping

    Get PDF
    Unmanned aerial vehicles technologies are getting smaller and cheaper to use and the challenges of payload limitation in unmanned aerial vehicles are being overcome. Integrated navigation system design requires selection of set of sensors and computation power that provides reliable and accurate navigation parameters (position, velocity and attitude) with high update rates and bandwidth in small and cost effective manner. Many of today’s operational unmanned aerial vehicles navigation systems rely on inertial sensors as a primary measurement source. Inertial Navigation alone however suffers from slow divergence with time. This divergence is often compensated for by employing some additional source of navigation information external to Inertial Navigation. From the 1990’s to the present day Global Positioning System has been the dominant navigation aid for Inertial Navigation. In a number of scenarios, Global Positioning System measurements may be completely unavailable or they simply may not be precise (or reliable) enough to be used to adequately update the Inertial Navigation hence alternative methods have seen great attention. Aiding Inertial Navigation with vision sensors has been the favoured solution over the past several years. Inertial and vision sensors with their complementary characteristics have the potential to answer the requirements for reliable and accurate navigation parameters. In this thesis we address Inertial Navigation position divergence. The information for updating the position comes from combination of vision and motion. When using such a combination many of the difficulties of the vision sensors (relative depth, geometry and size of objects, image blur and etc.) can be circumvented. Motion grants the vision sensors with many cues that can help better to acquire information about the environment, for instance creating a precise map of the environment and localize within the environment. We propose changes to the Simultaneous Localization and Mapping augmented state vector in order to take repeated measurements of the map point. We show that these repeated measurements with certain manoeuvres (motion) around or by the map point are crucial for constraining the Inertial Navigation position divergence (bounded estimation error) while manoeuvring in vicinity of the map point. This eliminates some of the uncertainty of the map point estimates i.e. it reduces the covariance of the map points estimates. This concept brings different parameterization (feature initialisation) of the map points in Simultaneous Localization and Mapping and we refer to it as concept of aiding Inertial Navigation by Simultaneous Localization and Mapping. We show that making such an integrated navigation system requires coordination with the guidance and control measurements and the vehicle task itself for performing the required vehicle manoeuvres (motion) and achieving better navigation accuracy. This fact brings new challenges to the practical design of these modern jam proof Global Positioning System free autonomous navigation systems. Further to the concept of aiding Inertial Navigation by Simultaneous Localization and Mapping we have investigated how a bearing only sensor such as single camera can be used for aiding Inertial Navigation. The results of the concept of Inertial Navigation aided by Simultaneous Localization and Mapping were used. New parameterization of the map point in Bearing Only Simultaneous Localization and Mapping is proposed. Because of the number of significant problems that appear when implementing the Extended Kalman Filter in Inertial Navigation aided by Bearing Only Simultaneous Localization and Mapping other algorithms such as Iterated Extended Kalman Filter, Unscented Kalman Filter and Particle Filters were implemented. From the results obtained, the conclusion can be drawn that the nonlinear filters should be the choice of estimators for this application

    A Global Asymptotic Convergent Observer for SLAM

    Get PDF
    This paper examines the global convergence problem of SLAM algorithms, an issue that faces topological obstructions. This is because the state-space of attitude dynamics is defined on a non-contractible manifold: the special orthogonal group of order three SO(3). Therefore, this paper presents a novel, gradient-based hybrid observer to overcome these topological obstacles. The Lyapunov stability theorem is used to prove the globally asymptotic convergence of the proposed algorithm. Finally, comparative analyses of two simulations were conducted to evaluate the performance of the proposed scheme and to demonstrate the superiority of the proposed hybrid observer to a smooth observer.Comment: 7 pages, 8 figures, conferenc

    A Localization Based on Unscented Kalman Filter and Particle Filter Localization Algorithms

    Get PDF
    Localization plays an important role in the field of Wireless Sensor Networks (WSNs) and robotics. Currently, localization is a very vibrant scientific research field with many potential applications. Localization offers a variety of services for the customers, for example, in the field of WSN, its importance is unlimited, in the field of logistics, robotics, and IT services. Particularly localization is coupled with the case of human-machine interaction, autonomous systems, and the applications of augmented reality. Also, the collaboration of WSNs and distributed robotics has led to the creation of Mobile Sensor Networks (MSNs). Nowadays there has been an increasing interest in the creation of MSNs and they are the preferred aspect of WSNs in which mobility plays an important role while an application is going to execute. To overcome the issues regarding localization, the authors developed a framework of three algorithms named Extended Kalman Filter (EKF), Unscented Kalman Filter (UKF) and Particle Filter (PF) Localization algorithms. In our previous study, the authors only focused on EKF-based localization. In this paper, the authors present a modified Kalman Filter (KF) for localization based on UKF and PF Localization. In the paper, all these algorithms are compared in very detail and evaluated based on their performance. The proposed localization algorithms can be applied to any type of localization approach, especially in the case of robot localization. Despite the harsh physical environment and several issues during localization, the result shows an outstanding localization performance within a limited time. The robustness of the proposed algorithms is verified through numerical simulations. The simulation results show that proposed localization algorithms can be used for various purposes such as target tracking, robot localization, and can improve the performance of localization

    A hybrid visual-based SLAM architecture: local filter-based SLAM with keyframe-based global mapping

    Get PDF
    This work presents a hybrid visual-based SLAM architecture that aims to take advantage of the strengths of each of the two main methodologies currently available for implementing visual-based SLAM systems, while at the same time minimizing some of their drawbacks. The main idea is to implement a local SLAM process using a filter-based technique, and enable the tasks of building and maintaining a consistent global map of the environment, including the loop closure problem, to use the processes implemented using optimization-based techniques. Different variants of visual-based SLAM systems can be implemented using the proposed architecture. This work also presents the implementation case of a full monocular-based SLAM system for unmanned aerial vehicles that integrates additional sensory inputs. Experiments using real data obtained from the sensors of a quadrotor are presented to validate the feasibility of the proposed approachPostprint (published version

    Visual Navigation in Unknown Environments

    Get PDF
    Navigation in mobile robotics involves two tasks, keeping track of the robot's position and moving according to a control strategy. In addition, when no prior knowledge of the environment is available, the problem is even more difficult, as the robot has to build a map of its surroundings as it moves. These three problems ought to be solved in conjunction since they depend on each other. This thesis is about simultaneously controlling an autonomous vehicle, estimating its location and building the map of the environment. The main objective is to analyse the problem from a control theoretical perspective based on the EKF-SLAM implementation. The contribution of this thesis is the analysis of system's properties such as observability, controllability and stability, which allow us to propose an appropriate navigation scheme that produces well-behaved estimators, controllers, and consequently, the system as a whole. We present a steady state analysis of the SLAM problem, identifying the conditions that lead to partial observability. It is shown that the effects of partial observability appear even in the ideal linear Gaussian case. This indicates that linearisation alone is not the only cause of SLAM inconsistency, and that observability must be achieved as a prerequisite to tackling the effects of linearisation. Additionally, full observability is also shown to be necessary during diagonalisation of the covariance matrix, an approach often used to reduce the computational complexity of the SLAM algorithm, and which leads to full controllability as we show in this work.Focusing specifically on the case of a system with a single monocular camera, we present an observability analysis using the nullspace basis of the stripped observability matrix. The aim is to get a better understanding of the well known intuitive behaviour of this type of systems, such as the need for triangulation to features from different positions in order to get accurate relative pose estimates between vehicle and camera. Through characterisation the unobservable directions in monocular SLAM, we are able to identify the vehicle motions required to maximise the number of observable states in the system. When closing the control loop of the SLAM system, both the feedback controller and the estimator are shown to be asymptotically stable. Furthermore, we show that the tracking error does not influence the estimation performance of a fully observable system and viceversa, that control is not affected by the estimation. Because of this, a higher level motion strategy is required in order to enhance estimation, specially needed while performing SLAM with a single camera. Considering a real-time application, we propose a control strategy to optimise both the localisation of the vehicle and the feature map by computing the most appropriate control actions or movements. The actions are chosen in order to maximise an information theoretic metric. Simulations and real-time experiments are performed to demonstrate the feasibility of the proposed control strategy

    Theory, Design, and Implementation of Landmark Promotion Cooperative Simultaneous Localization and Mapping

    Get PDF
    Simultaneous Localization and Mapping (SLAM) is a challenging problem in practice, the use of multiple robots and inexpensive sensors poses even more demands on the designer. Cooperative SLAM poses specific challenges in the areas of computational efficiency, software/network performance, and robustness to errors. New methods in image processing, recursive filtering, and SLAM have been developed to implement practical algorithms for cooperative SLAM on a set of inexpensive robots. The Consolidated Unscented Mixed Recursive Filter (CUMRF) is designed to handle non-linear systems with non-Gaussian noise. This is accomplished using the Unscented Transform combined with Gaussian Mixture Models. The Robust Kalman Filter is an extension of the Kalman Filter algorithm that improves the ability to remove erroneous observations using Principal Component Analysis (PCA) and the X84 outlier rejection rule. Forgetful SLAM is a local SLAM technique that runs in nearly constant time relative to the number of visible landmarks and improves poor performing sensors through sensor fusion and outlier rejection. Forgetful SLAM correlates all measured observations, but stops the state from growing over time. Hierarchical Active Ripple SLAM (HAR-SLAM) is a new SLAM architecture that breaks the traditional state space of SLAM into a chain of smaller state spaces, allowing multiple robots, multiple sensors, and multiple updates to occur in linear time with linear storage with respect to the number of robots, landmarks, and robots poses. This dissertation presents explicit methods for closing-the-loop, joining multiple robots, and active updates. Landmark Promotion SLAM is a hierarchy of new SLAM methods, using the Robust Kalman Filter, Forgetful SLAM, and HAR-SLAM. Practical aspects of SLAM are a focus of this dissertation. LK-SURF is a new image processing technique that combines Lucas-Kanade feature tracking with Speeded-Up Robust Features to perform spatial and temporal tracking. Typical stereo correspondence techniques fail at providing descriptors for features, or fail at temporal tracking. Several calibration and modeling techniques are also covered, including calibrating stereo cameras, aligning stereo cameras to an inertial system, and making neural net system models. These methods are important to improve the quality of the data and images acquired for the SLAM process
    • …
    corecore