399 research outputs found

    Solving the planar p-median problem by variable neighborhood and concentric searches

    Get PDF
    Two new approaches for the solution of the p-median problem in the plane are proposed. One is a Variable Neighborhood Search (VNS) and the other one is a concentric search. Both approaches are enhanced by a front-end procedure for finding good starting solutions and a decomposition heuristic acting as a post optimization procedure. Computational results confirm the effectiveness of the proposed algorithms

    A numerical method for mass conservative coupling between fluid flow and solute transport

    Get PDF
    We present a new coupled discretization approach for species transport in an incompressible fluid. The Navier-Stokes equations for the flow are discretized by the divergence-free Scott-Vogelius element on barycentrically refined meshes guaranteeing LBB stability. The convection-diffusion equation for species transport is discretized by the Voronoi finite volume method. In accordance to the continuous setting, due to the exact integration of the normal component of the flow through the Voronoi surfaces, the species concentration fulfills discrete global and local maximum principles. Besides of the the numerical scheme itself, we present important aspects of its implementation. Further, for the case of homogeneous Dirichlet boundary conditions, we give a convergence proof for the coupled scheme. We report results of the application of the scheme to the interpretation of limiting current measurements in an electrochemical flow cell with cylindrical shape

    A Characterization Theorem and An Algorithm for A Convex Hull Problem

    Full text link
    Given S={v1,,vn}RmS= \{v_1, \dots, v_n\} \subset \mathbb{R} ^m and pRmp \in \mathbb{R} ^m, testing if pconv(S)p \in conv(S), the convex hull of SS, is a fundamental problem in computational geometry and linear programming. First, we prove a Euclidean {\it distance duality}, distinct from classical separation theorems such as Farkas Lemma: pp lies in conv(S)conv(S) if and only if for each pconv(S)p' \in conv(S) there exists a {\it pivot}, vjSv_j \in S satisfying d(p,vj)d(p,vj)d(p',v_j) \geq d(p,v_j). Equivalently, p∉conv(S)p \not \in conv(S) if and only if there exists a {\it witness}, pconv(S)p' \in conv(S) whose Voronoi cell relative to pp contains SS. A witness separates pp from conv(S)conv(S) and approximate d(p,conv(S))d(p, conv(S)) to within a factor of two. Next, we describe the {\it Triangle Algorithm}: given ϵ(0,1)\epsilon \in (0,1), an {\it iterate}, pconv(S)p' \in conv(S), and vSv \in S, if d(p,p)<ϵd(p,v)d(p, p') < \epsilon d(p,v), it stops. Otherwise, if there exists a pivot vjv_j, it replace vv with vjv_j and pp' with the projection of pp onto the line pvjp'v_j. Repeating this process, the algorithm terminates in O(mnmin{ϵ2,c1lnϵ1})O(mn \min \{\epsilon^{-2}, c^{-1}\ln \epsilon^{-1} \}) arithmetic operations, where cc is the {\it visibility factor}, a constant satisfying cϵ2c \geq \epsilon^2 and sin(ppvj)1/1+c\sin (\angle pp'v_j) \leq 1/\sqrt{1+c}, over all iterates pp'. Additionally, (i) we prove a {\it strict distance duality} and a related minimax theorem, resulting in more effective pivots; (ii) describe O(mnlnϵ1)O(mn \ln \epsilon^{-1})-time algorithms that may compute a witness or a good approximate solution; (iii) prove {\it generalized distance duality} and describe a corresponding generalized Triangle Algorithm; (iv) prove a {\it sensitivity theorem} to analyze the complexity of solving LP feasibility via the Triangle Algorithm. The Triangle Algorithm is practical and competitive with the simplex method, sparse greedy approximation and first-order methods.Comment: 42 pages, 17 figures, 2 tables. This revision only corrects minor typo

    A numerical method for mass conservative coupling between fluid flow and solute transport

    Get PDF
    We present a new coupled discretization approach for species transport in an incompressible fluid. The Navier-Stokes equations for the flow are discretized by the divergence-free Scott-Vogelius element on barycentrically refined meshes guaranteeing LBB stability. The convection-diffusion equation for species transport is discretized by the Voronoi finite volume method. In accordance to the continuous setting, due to the exact integration of the normal component of the flow through the Voronoi surfaces, the species concentration fulfills discrete global and local maximum principles. Besides of the the numerical scheme itself, we present important aspects of its implementation. Further, for the case of homogeneous Dirichlet boundary conditions, we give a convergence proof for the coupled scheme. We report results of the application of the scheme to the interpretation of limiting current measurements in an electrochemical flow cell with cylindrical shape
    corecore