202 research outputs found

    An assembly and offset assignment scheme for self-similar traffic in optical burst switching

    Get PDF
    Includes bibliographical references.Optical Burst Switching (OBS) is a viable technology for the next generation core network. We propose an FEC-assembly scheme that efficiently assembles self-similar traffic and a Pareto-offset assignment rather than a constant offset assignment. Two buffers, a packet buffer and a burst buffer, are implemented at the Label Edge Router (LER), buffering traffic in the electronic domain. The assembler, between the packet and burst buffers, is served by the packet queue while the assembler serves the burst queue. We outline advantages of why burst assembly cannot be implemented independent of offset assignment. The two schemes must be implemented in a complementary way if QoS is to be realized in an OBS network. We show that there is a direct relation between OBS network performance with burst assembly and offset assignment. We present simulation results of the assembly and offset assignment proposals using the ns2 network simulator. Our results show that the combination of the proposed FEC-Based assembly scheme with the proposed Pareto-offset assignment scheme give better network performance in terms of burst drop, resource contention and delay. Key to any traffic shaping is the nature traffic being shaped. This work also compares performance of both traditional exponential traffic with realistic Self-Similar traffic of Internet traffic on the proposed assembly and offset assignment schemes. In our simulations, we assume that all Label Switch Routers (LSR) have wavelength converters and are without optical buffers. We use Latest Available Unused Channel with Void Filling (LAUC-VF) scheduling scheme and use Just Enough Time (JET) reservation scheme

    Node design in optical packet switched networks

    Get PDF

    A Priority Based Optical Header Contention Resolution in Optical Burst Switching Networks

    Get PDF
    OBS is a promising switching paradigm for the next-generation Internet.In OBS, data packets are assembled into variable size data burst which are transmitted optically over Dense Wavelength Division Multiplexing(DWDM)networks without O/E/O conversion. The control packet is sent before the data burst to reserve resources and configure switches along the path .The control packet is sent along the separate control channel and goes through O/E/O conversion. We have discussed various OBS signalling protocols and Burst Scheduling Algorithms. As the data channel bandwidth will grow it will lead to the overloading of the control path. In this thesis we have proposed an algorithm to resolve the contention of the optical header. The algorithm assigns the priority to each control packet arriving at the same time .The control packet with highest priority is selected for processing. Simulation results have shown that the technique is effective in improving the throughput

    PI-OBS: a Parallel Iterative Optical Burst Scheduler for OBS networks

    Get PDF
    This paper presents the PI-OBS algorithm, a parallel-iterative scheduler for OBS nodes. Conventional schemes are greedy in the sense that they process headers one by one. In PI-OBS, all the headers received during a given time window are jointly processed to optimize the delay and output wavelength allocation, applying void filling techniques, and allowing traffic differentiation. Results show a similar or better performance than the LAUC-VF algorithm, commonly used as a performance bound for OBS schedulers. The PI-OBS scheduler has been designed to allow parallel electronic implementation similar to the ones in VOQ schedulers, with a deterministic response time.This research has been partially supported by the MEC projects TEC2007-67966-01/TCM CON-PARTE-1, and TEC2008-02552-E, and it is also developed in the framework of "Programa de Ayudas a Grupos de Excelencia de la R. de Murcia, F. Séneca"

    Supporting differentiated quality of service in optical burst switched networks

    Get PDF
    We propose and evaluate two new schemes for providing differentiated services in optical burst switched (OBS) networks. The two new schemes are suitable for implementation in OBS networks using just-in-time (JIT) or just-enough-time (JET) scheduling protocols. The first scheme adjusts the size of the search space for a free wavelength based on the priority level of the burst. A simple equation is used to divide the search spectrum into two parts: a base part and an adjustable part. The size of the adjustable part increases as the priority of the burst becomes higher. The scheme is very easy to implement and does not demand any major software or hardware resources in optical cross-connects. The second scheme reduces the dropping probability of bursts with higher priorities through the use of different proactive discarding rates in the network access station (NAS) of the source node. Our extensive simulation tests using JIT show that both schemes are capable of providing tangible quality of service (QoS) differentiation without negatively impacting the throughput of OBS networks

    Computation of Dispersion Penalty for the Analysis of WDM Link Quality

    Get PDF
    The provisioning of light path over WDM/DWDM network is a challenging factor, which depends on various physical layer impairments such as dispersion in fiber. We proposed a light path provisioning mechanism by considering the effect of dispersion in fiber termed as dispersion penalty, which is the prominent effect at high speed WDM network. In the case of non-ideal filter, light path provisioning without considering the physical layer impairments does not satisfy the signal quality guaranteed transmission. In this algorithm, Quality of Service is described in terms of dispersion penalty values with an assumption that the entire client has a requirement of penalty less than 2 Db. Here we have analyzed the degradation in bit rate due to the effect of dispersion. The maximum possible length of fiber is also reduced due to high dispersion in fiber. Dispersion penalty is the increment in the received power to eliminate the effect of some undesirable distortion in optical fiber. Dispersion penalty is calculated in terms of bit rate and band width for each data path. The proposal of dispersion penalty budgeting is to ensure that the optical power reaching the receiver is adequate under all circumstances. The proposed algorithm defines a mechanism for effective light path provisioning by comparing the requirement of client and the available resources of the network

    A Survey of Quality of Service Differentiation Mechanisms for Optical Burst Switching Networks

    Get PDF
    Cataloged from PDF version of article.This paper presents an overview of Quality of Service (QoS) differentiation mechanisms proposed for Optical Burst Switching (OBS) networks. OBS has been proposed to couple the benefits of both circuit and packet switching for the ‘‘on demand’’ use of capacity in the future optical Internet. In such a case, QoS support imposes some important challenges before this technology is deployed. This paper takes a broader view on QoS, including QoS differentiation not only at the burst but also at the transport levels for OBS networks. A classification of existing QoS differentiation mechanisms for OBS is given and their efficiency and complexity are comparatively discussed. We provide numerical examples on how QoS differentiation with respect to burst loss rate and transport layer throughput can be achieved in OBS networks. © 2009 Elsevier B.V. All rights reserved
    corecore