409 research outputs found

    Towards Autonomic Service Provisioning Systems

    Full text link
    This paper discusses our experience in building SPIRE, an autonomic system for service provision. The architecture consists of a set of hosted Web Services subject to QoS constraints, and a certain number of servers used to run session-based traffic. Customers pay for having their jobs run, but require in turn certain quality guarantees: there are different SLAs specifying charges for running jobs and penalties for failing to meet promised performance metrics. The system is driven by an utility function, aiming at optimizing the average earned revenue per unit time. Demand and performance statistics are collected, while traffic parameters are estimated in order to make dynamic decisions concerning server allocation and admission control. Different utility functions are introduced and a number of experiments aiming at testing their performance are discussed. Results show that revenues can be dramatically improved by imposing suitable conditions for accepting incoming traffic; the proposed system performs well under different traffic settings, and it successfully adapts to changes in the operating environment.Comment: 11 pages, 9 Figures, http://www.wipo.int/pctdb/en/wo.jsp?WO=201002636

    Modeling and analysis of 2D service differentiation on e-commerce servers

    Full text link

    Distributed workload and response time management for web applications

    Get PDF
    Abstract-Managing workload for large scale web applications is a fundamental task for satisfactory quality of service, low management and operation cost. In this paper, we present SCOPS, a system of distributed workload management to achieve service differentiation and overload protection in such large scale deployment. Our system splits the workload management logic into distributed components on each back-end server and frontend proxy. The control solution is designed to protect the backend server from overloading and to achieve both efficient usage of system resource and service differentiation by employing a unique optimization target. The control components are automatically organized based on the flow of workloads, such that management overhead is minimized. SCOPS is extremely flexible because it requires no source code changes to host OS, application servers, or web applications. Additionally, the distributed design makes it scalable and robust for cloud scale server deployment. Experiments with our implementation confirm SCOPS's performance with dynamic heavy workload, incurring neglectable runtime overhead. More importantly, SCOPS also ensures fault-tolerance and fast convergence to system failures

    AWAIT: Efficient Overload Management for Busy Multi-tier Web Services under Bursty Workloads

    Get PDF
    The problem of service differentiation and admission control in web services that utilize a multi-tier architecture is more challenging than in a single-tiered one, especially in the presence of bursty conditions, i.e., when arrivals of user web sessions to the system are characterized by temporal surges in their arrival intensities and demands. We demonstrate that classic techniques for a session based admission control that are triggered by threshold violations are ineffective under bursty workload conditions, as user-perceived performance metrics rapidly and dramatically deteriorate, inadvertently leading the system to reject requests from already accepted user sessions, resulting in business loss. Here, as a solution for service differentiation of accepted user sessions we promote a methodology that is based on blocking, i.e., when the system operates in overload, requests from accepted sessions are not rejected but are instead stored in a blocking queue that effectively acts as a waiting room. The requests in the blocking queue implicitly become of higher priority and are served immediately after load subsides. Residence in the blocking queue comes with a performance cost as blocking time adds to the perceived end-to-end user response time. We present a novel autonomic session based admission control policy, called AWAIT, that adaptively adjusts the capacity of the blocking queue as a function of workload burstiness in order to meet predefined user service level objectives while keeping the portion of aborted accepted sessions to a minimum. Detailed simulations illustrate the effectiveness of AWAIT under different workload burstiness profiles and therefore strongly argue for its effectiveness

    A Middleware framework for self-adaptive large scale distributed services

    Get PDF
    Modern service-oriented applications demand the ability to adapt to changing conditions and unexpected situations while maintaining a required QoS. Existing self-adaptation approaches seem inadequate to address this challenge because many of their assumptions are not met on the large-scale, highly dynamic infrastructures where these applications are generally deployed on. The main motivation of our research is to devise principles that guide the construction of large scale self-adaptive distributed services. We aim to provide sound modeling abstractions based on a clear conceptual background, and their realization as a middleware framework that supports the development of such services. Taking the inspiration from the concepts of decentralized markets in economics, we propose a solution based on three principles: emergent self-organization, utility driven behavior and model-less adaptation. Based on these principles, we designed Collectives, a middleware framework which provides a comprehensive solution for the diverse adaptation concerns that rise in the development of distributed systems. We tested the soundness and comprehensiveness of the Collectives framework by implementing eUDON, a middleware for self-adaptive web services, which we then evaluated extensively by means of a simulation model to analyze its adaptation capabilities in diverse settings. We found that eUDON exhibits the intended properties: it adapts to diverse conditions like peaks in the workload and massive failures, maintaining its QoS and using efficiently the available resources; it is highly scalable and robust; can be implemented on existing services in a non-intrusive way; and do not require any performance model of the services, their workload or the resources they use. We can conclude that our work proposes a solution for the requirements of self-adaptation in demanding usage scenarios without introducing additional complexity. In that sense, we believe we make a significant contribution towards the development of future generation service-oriented applications.Las Aplicaciones Orientadas a Servicios modernas demandan la capacidad de adaptarse a condiciones variables y situaciones inesperadas mientras mantienen un cierto nivel de servio esperado (QoS). Los enfoques de auto-adaptación existentes parecen no ser adacuados debido a sus supuestos no se cumplen en infrastructuras compartidas de gran escala. La principal motivación de nuestra investigación es inerir un conjunto de principios para guiar el desarrollo de servicios auto-adaptativos de gran escala. Nuesto objetivo es proveer abstraciones de modelaje apropiadas, basadas en un marco conceptual claro, y su implemetnacion en un middleware que soporte el desarrollo de estos servicios. Tomando como inspiración conceptos económicos de mercados decentralizados, hemos propuesto una solución basada en tres principios: auto-organización emergente, comportamiento guiado por la utilidad y adaptación sin modelos. Basados en estos principios diseñamos Collectives, un middleware que proveer una solución exhaustiva para los diversos aspectos de adaptación que surgen en el desarrollo de sistemas distribuidos. La adecuación y completitud de Collectives ha sido provada por medio de la implementación de eUDON, un middleware para servicios auto-adaptativos, el ha sido evaluado de manera exhaustiva por medio de un modelo de simulación, analizando sus propiedades de adaptación en diversos escenarios de uso. Hemos encontrado que eUDON exhibe las propiedades esperadas: se adapta a diversas condiciones como picos en la carga de trabajo o fallos masivos, mateniendo su calidad de servicio y haciendo un uso eficiente de los recusos disponibles. Es altamente escalable y robusto; puedeoo ser implementado en servicios existentes de manera no intrusiva; y no requiere la obtención de un modelo de desempeño para los servicios. Podemos concluir que nuestro trabajo nos ha permitido desarrollar una solucion que aborda los requerimientos de auto-adaptacion en escenarios de uso exigentes sin introducir complejidad adicional. En este sentido, consideramos que nuestra propuesta hace una contribución significativa hacia el desarrollo de la futura generación de aplicaciones orientadas a servicios.Postprint (published version

    A Priority-Based Admission Control Scheme for Commercial Web Servers

    Get PDF
    This paper investigates into the performance and load management of web servers that are deployed in commercial websites. Such websites offer various services such as flight/hotel booking, online banking, stock trading, and product purchases among others. Customers are increasingly relying on these round-the-clock services which are easier and (generally) cheaper to order. However, such an increasing number of customers’ requests makes a greater demand on the web servers. This leads to web servers’ overload and the consequential provisioning of inadequate level of service. This paper addresses these issues and proposes an admission control scheme which is based on the class-based priority scheme that classifies customer’s requests into different classes. The proposed scheme is formally specified using ΠΠ-calculus and is implemented as a Java-based prototype system. The prototype system is used to simulate the behaviour of commercial website servers and to evaluate their performance in terms of response time, throughput, arrival rate, and the percentage of dropped requests. Experimental results demonstrate that the proposed scheme significantly improves the performance of high priority requests but without causing adverse effects on low priority requests

    Theories and Models for Internet Quality of Service

    Get PDF
    We survey recent advances in theories and models for Internet Quality of Service (QoS). We start with the theory of network calculus, which lays the foundation for support of deterministic performance guarantees in networks, and illustrate its applications to integrated services, differentiated services, and streaming media playback delays. We also present mechanisms and architecture for scalable support of guaranteed services in the Internet, based on the concept of a stateless core. Methods for scalable control operations are also briefly discussed. We then turn our attention to statistical performance guarantees, and describe several new probabilistic results that can be used for a statistical dimensioning of differentiated services. Lastly, we review recent proposals and results in supporting performance guarantees in a best effort context. These include models for elastic throughput guarantees based on TCP performance modeling, techniques for some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support

    Advances in Internet Quality of Service

    Get PDF
    We describe recent advances in theories and architecture that support performance guarantees needed for quality of service networks. We start with deterministic computations and give applications to integrated services, differentiated services, and playback delays. We review the methods used for obtaining a scalable integrated services support, based on the concept of a stateless core. New probabilistic results that can be used for a statistical dimensioning of differentiated services are explained; some are based on classical queuing theory, while others capitalize on the deterministic results. Then we discuss performance guarantees in a best effort context; we review: methods to provide some quality of service in a pure best effort environment; methods to provide some quality of service differentiation without access control, and methods that allow an application to control the performance it receives, in the absence of network support
    corecore