22 research outputs found

    A QPTAS for the Base of the Number of Triangulations of a Planar Point Set

    Full text link
    The number of triangulations of a planar n point set is known to be cnc^n, where the base cc lies between 2.432.43 and 30.30. The fastest known algorithm for counting triangulations of a planar n point set runs in O∗(2n)O^*(2^n) time. The fastest known arbitrarily close approximation algorithm for the base of the number of triangulations of a planar n point set runs in time subexponential in n.n. We present the first quasi-polynomial approximation scheme for the base of the number of triangulations of a planar point set

    Studies in Efficient Discrete Algorithms

    Get PDF
    This thesis consists of five papers within the design and analysis of efficient algorithms.In the first paper, we consider the problem of computing all-pairs shortest paths in a directed graph with real weights assigned to vertices. We develop a combinatorial randomized algorithm that runs in subcubic time for a special class of graphs.In the second paper, we present a polynomial-time dynamic programming algorithm for optimal partitions of a complete edge-weighted graph, where the edges are weighted by the length of the unique shortest path connecting those vertices in the a priori given tree (shortest path metric induced by a tree). Our result resolves, in particular, the complexity status of the optimal partition problems in one-dimensional geometric (Euclidean) setting.In the third paper, we study the NP-hard problem of partitioning an orthogonal polyhedron P into a minimum number of 3D rectangles. We present an approximation algorithm with the approximation ratio 4 for the special case of the problem in which P is a so-called 3D histogram. We then apply it to compute the exact arithmetic matrix product of two matrices with non-negative integer entries. The computation is time-efficient if the 3D histograms induced by the input matrices can be partitioned into relatively few 3D rectangles.In the fourth paper, we present the first quasi-polynomial approximation schemes for the base of the number of triangulations of a planar point set and the base of the number of crossing-free spanning trees on a planar point set, respectively.In the fifth paper, we study the complexity of detecting monomials with special properties in the sum-product expansion of a polynomial represented by an arithmetic circuit of size polynomial in the number of input variables and using only multiplication and addition. We present a fixed-parameter tractable algorithms for the detection of monomial having at least k distinct variables, parametrized with respect to k. Furthermore, we derive several hardness results on the detection of monomials with such properties within exact, parametrized and approximation complexity

    Peeling and nibbling the cactus: Subexponential-time algorithms for counting triangulations and related problems

    Get PDF
    Given a set of nn points SS in the plane, a triangulation TT of SS is a maximal set of non-crossing segments with endpoints in SS. We present an algorithm that computes the number of triangulations on a given set of nn points in time n(11+o(1))nn^{(11+ o(1))\sqrt{n} }, significantly improving the previous best running time of O(2nn2)O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(n)O(\sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in nO(n)n^{O(\sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 33-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 33-regular graphs, and more.Comment: 47 pages, 23 Figures, to appear in SoCG 201

    Peeling and Nibbling the Cactus: Subexponential-Time Algorithms for Counting Triangulations and Related Problems

    Get PDF
    Given a set of n points S in the plane, a triangulation T of S is a maximal set of non-crossing segments with endpoints in S. We present an algorithm that computes the number of triangulations on a given set of n points in time n^{ (11+ o(1)) sqrt{n} }, significantly improving the previous best running time of O(2^n n^2) by Alvarez and Seidel [SoCG 2013]. Our main tool is identifying separators of size O(sqrt{n}) of a triangulation in a canonical way. The definition of the separators are based on the decomposition of the triangulation into nested layers ("cactus graphs"). Based on the above algorithm, we develop a simple and formal framework to count other non-crossing straight-line graphs in n^{O(sqrt{n})} time. We demonstrate the usefulness of the framework by applying it to counting non-crossing Hamilton cycles, spanning trees, perfect matchings, 3-colorable triangulations, connected graphs, cycle decompositions, quadrangulations, 3-regular graphs, and more

    Counting Polygon Triangulations is Hard

    Get PDF
    We prove that it is #P-complete to count the triangulations of a (non-simple) polygon

    Counting and Enumerating Crossing-free Geometric Graphs

    Full text link
    We describe a framework for counting and enumerating various types of crossing-free geometric graphs on a planar point set. The framework generalizes ideas of Alvarez and Seidel, who used them to count triangulations in time O(2nn2)O(2^nn^2) where nn is the number of points. The main idea is to reduce the problem of counting geometric graphs to counting source-sink paths in a directed acyclic graph. The following new results will emerge. The number of all crossing-free geometric graphs can be computed in time O(cnn4)O(c^nn^4) for some c<2.83929c < 2.83929. The number of crossing-free convex partitions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free perfect matchings can be computed in time O(2nn4)O(2^nn^4). The number of convex subdivisions can be computed in time O(2nn4)O(2^nn^4). The number of crossing-free spanning trees can be computed in time O(cnn4)O(c^nn^4) for some c<7.04313c < 7.04313. The number of crossing-free spanning cycles can be computed in time O(cnn4)O(c^nn^4) for some c<5.61804c < 5.61804. With the same bounds on the running time we can construct data structures which allow fast enumeration of the respective classes. For example, after O(2nn4)O(2^nn^4) time of preprocessing we can enumerate the set of all crossing-free perfect matchings using polynomial time per enumerated object. For crossing-free perfect matchings and convex partitions we further obtain enumeration algorithms where the time delay for each (in particular, the first) output is bounded by a polynomial in nn. All described algorithms are comparatively simple, both in terms of their analysis and implementation

    Visualization Algorithms for Maps and Diagrams

    Get PDF
    One of the most common visualization tools used by mankind are maps or diagrams. In this thesis we explore new algorithms for visualizing maps (road and argument maps). A map without any textual information or pictograms is often without use so we research also further into the field of labeling maps. In particular we consider the new challenges posed by interactive maps offered by mobile devices. We discuss new algorithmic approaches and experimentally evaluate them

    27th Annual European Symposium on Algorithms: ESA 2019, September 9-11, 2019, Munich/Garching, Germany

    Get PDF

    Algorithms and complexity analyses for some combinational optimization problems

    Get PDF
    The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design. In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios. In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices &ruv. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs. Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost
    corecore