51 research outputs found

    A computer simulation of oscillatory behavior in primary visual cortex

    Get PDF
    Periodic variations in correlated cellular activity have been observed in many regions of the cerebral cortex. The recent discovery of stimulus-dependent, spatially-coherent oscillations in primary visual cortex of the cat has led to suggestions of neural information encoding schemes based on phase and/or frequency variation. To explore the mechanisms underlying this behavior and their possible functional consequences, we have developed a realistic neural model, based on structural features of visual cortex, which replicates observed oscillatory phenomena. In the model, this oscillatory behavior emerges directly from the structure of the cortical network and the properties of its intrinsic neurons; however, phase coherence is shown to be an average phenomenon seen only when measurements are made over multiple trials. Because average coherence does not ensure synchrony of firing over the course of single stimuli, oscillatory phase may not be a robust strategy for directly encoding stimulus-specific information. Instead, the phase and frequency of cortical oscillations may reflect the coordination of general computational processes within and between cortical areas. Under this interpretation, coherence emerges as a result of horizontal interactions that could be involved in the formation of receptive field properties

    Cortical Mechanisms Of Adaptation In Auditory Processing

    Get PDF
    Adaptation is computational strategy that underlies sensory nervous systems’ ability to accurately encode stimuli in various and dynamic contexts and shapes how animals perceive their environment. Many questions remain concerning how adaptation adjusts to particular stimulus features and its underlying mechanisms. In Chapter 2, we tested how neurons in the primary auditory cortex adapt to changes in stimulus temporal correlation. We used chronically implanted tetrodes to record neuronal spiking in rat primary auditory cortex during exposure to custom made dynamic random chord stimuli exhibiting different levels of temporal correlation. We estimated linear non-linear model for each neuron at each temporal correlation level, finding that neurons compensate for temporal correlation changes through gain-control adaptation. This experiment extends our understanding of how complex stimulus statistics are encoded in the auditory nervous system. In Chapter 3 and 4, we tested how interneurons are involved in adaptation by optogenetically suppressing parvalbumin-positive (PV) and somatostatin-positive (SOM) interneurons during tone train stimuli and using silicon probes to record neuronal spiking in mouse primary auditory cortex. In Chapter 3, we found that inhibition from both PVs and SOMs contributes to stimulus-specific adaptation (SSA) through different mechanisms. SOM inhibition was stimulus-specific, suppressing responses to standard tones more strongly than responses to deviant tones, and increasing with standard tone repetition. PVs amplified SSA because inhibition was similar for standard and deviant tones and PV mediated inhibition was insensitive to tone repetition. PVs and SOMs themselves exhibit SSA, and a Wilson-Cowan dynamic model identified that PVs and SOMs can directly contribute to SSA in pyramidal neurons. In Chapter 4, we tested how SOMs and PVs inhibition is modulated with the dynamics of adaptation and across frequency tuning, during exposure to single frequency tone trains across the neuron’s tuning curve. We found that the magnitude of SOM inhibition correlated with the magnitude of adaptive suppression, while PVs inhibition was largely insensitive to stimulus conditions. Together Chapters 3 and 4 implicate SOM inhibition in actively suppressing responses in a stimulus-specific manner while PV inhibition may passively enhance stimulus-specific suppression. These experiments inform the underlying principles and mechanisms of cortical sensory adaptation

    Traveling waves in visual cortex.

    Get PDF
    Electrode recordings and imaging studies have revealed that localized visual stimuli elicit waves of activity that travel across primary visual cortex. Traveling waves are present also during spontaneous activity, but they can be greatly reduced by widespread and intensive visual stimulation. In this Review, we summarize the evidence in favor of these traveling waves. We suggest that their substrate may lie in long-range horizontal connections and that their functional role may involve the integration of information over large regions of space
    • …
    corecore