508 research outputs found

    Univariate and bivariate integral roots certificates based on Hensel's lifting

    Get PDF
    If it is quite easy to check a given integer is a root of a given polynomial with integer coefficients, verifying we know all the integral roots of a polynomial requires a different approach. In both univariate and bivariate cases, we introduce a type of integral roots certificates and the corresponding checker specification, based on Hensel's lifting. We provide a formalization of this iterative algorithm from which we deduce a formal proof of the correctness of the checkers, with the help of the COQ proof assistant along with the SSReflect extension. The ultimate goal of this work is to provide a component that will be involved in a complete certification chain for solving the Table Maker's Dilemma in an exact way

    Formal Proofs for Nonlinear Optimization

    Get PDF
    We present a formally verified global optimization framework. Given a semialgebraic or transcendental function ff and a compact semialgebraic domain KK, we use the nonlinear maxplus template approximation algorithm to provide a certified lower bound of ff over KK. This method allows to bound in a modular way some of the constituents of ff by suprema of quadratic forms with a well chosen curvature. Thus, we reduce the initial goal to a hierarchy of semialgebraic optimization problems, solved by sums of squares relaxations. Our implementation tool interleaves semialgebraic approximations with sums of squares witnesses to form certificates. It is interfaced with Coq and thus benefits from the trusted arithmetic available inside the proof assistant. This feature is used to produce, from the certificates, both valid underestimators and lower bounds for each approximated constituent. The application range for such a tool is widespread; for instance Hales' proof of Kepler's conjecture yields thousands of multivariate transcendental inequalities. We illustrate the performance of our formal framework on some of these inequalities as well as on examples from the global optimization literature.Comment: 24 pages, 2 figures, 3 table

    Rigorous Polynomial Approximation using Taylor Models in Coq

    Get PDF
    International audienceOne of the most common and practical ways of representing a real function on machines is by using a polynomial approximation. It is then important to properly handle the error introduced by such an approximation. The purpose of this work is to offer guaranteed error bounds for a specific kind of rigorous polynomial approximation called Taylor model. We carry out this work in the Coq proof assistant, with a special focus on genericity and efficiency for our implementation. We give an abstract interface for rigorous polynomial approximations, parameter- ized by the type of coefficients and the implementation of polynomials, and we instantiate this interface to the case of Taylor models with inter- val coefficients, while providing all the machinery for computing them. We compare the performances of our implementation in Coq with those of the Sollya tool, which contains an implementation of Taylor models written in C. This is a milestone in our long-term goal of providing fully formally proved and efficient Taylor models

    Implementação de um co-processador RSA

    Get PDF

    Primality Proving with Elliptic Curves

    Get PDF
    International audienceElliptic curves are fascinating mathematical objects. In this paper, we present the way they have been represented inside the {\sc Coq} system, and how we have proved that the classical composition law on the points is internal and gives them a group structure. We then describe how having elliptic curves inside a prover makes it possible to derive a checker for proving the primality of natural numbers

    A formally verified compiler back-end

    Get PDF
    This article describes the development and formal verification (proof of semantic preservation) of a compiler back-end from Cminor (a simple imperative intermediate language) to PowerPC assembly code, using the Coq proof assistant both for programming the compiler and for proving its correctness. Such a verified compiler is useful in the context of formal methods applied to the certification of critical software: the verification of the compiler guarantees that the safety properties proved on the source code hold for the executable compiled code as well

    Hilbert's Tenth Problem in Coq (Extended Version)

    Get PDF
    We formalise the undecidability of solvability of Diophantine equations, i.e. polynomial equations over natural numbers, in Coq's constructive type theory. To do so, we give the first full mechanisation of the Davis-Putnam-Robinson-Matiyasevich theorem, stating that every recursively enumerable problem -- in our case by a Minsky machine -- is Diophantine. We obtain an elegant and comprehensible proof by using a synthetic approach to computability and by introducing Conway's FRACTRAN language as intermediate layer. Additionally, we prove the reverse direction and show that every Diophantine relation is recognisable by ÎĽ\mu-recursive functions and give a certified compiler from ÎĽ\mu-recursive functions to Minsky machines.Comment: submitted to LMC
    • …
    corecore