532 research outputs found

    Parallelization of SAT on Reconfigurable Hardware

    Full text link
    Quoique très difficile à résoudre, le problème de satisfiabilité Booléenne (SAT) est fréquemment utilisé lors de la modélisation d’applications industrielles. À cet effet, les deux dernières décennies ont vu une progression fulgurante des outils conçus pour trouver des solutions à ce problème NP-complet. Deux grandes avenues générales ont été explorées afin de produire ces outils, notamment l’approche logicielle et matérielle. Afin de raffiner et améliorer ces solveurs, de nombreuses techniques et heuristiques ont été proposées par la communauté de recherche. Le but final de ces outils a été de résoudre des problèmes de taille industrielle, ce qui a été plus ou moins accompli par les solveurs de nature logicielle. Initialement, le but de l’utilisation du matériel reconfigurable a été de produire des solveurs pouvant trouver des solutions plus rapidement que leurs homologues logiciels. Cependant, le niveau de sophistication de ces derniers a augmenté de telle manière qu’ils restent le meilleur choix pour résoudre SAT. Toutefois, les solveurs modernes logiciels n’arrivent toujours pas a trouver des solutions de manière efficace à certaines instances SAT. Le but principal de ce mémoire est d’explorer la résolution du problème SAT dans le contexte du matériel reconfigurable en vue de caractériser les ingrédients nécessaires d’un solveur SAT efficace qui puise sa puissance de calcul dans le parallélisme conféré par une plateforme FPGA. Le prototype parallèle implémenté dans ce travail est capable de se mesurer, en termes de vitesse d’exécution à d’autres solveurs (matériels et logiciels), et ce sans utiliser aucune heuristique. Nous montrons donc que notre approche matérielle présente une option prometteuse vers la résolution d’instances industrielles larges qui sont difficilement abordées par une approche logicielle.Though very difficult to solve, the Boolean satisfiability problem (SAT) is extensively used to model various real-world applications and problems. Over the past two decades, researchers have tried to provide tools that are used, to a certain degree, to find solutions to the Boolean satisfiability problem. The nature of these tools is broadly divided in software and reconfigurable hardware solvers. In addition, the main algorithms used to solve this problem have also been complemented with heuristics of various levels of sophistication to help overcome some of the NP-hardness of the problem. The end goal of these tools has been to provide solutions to industrial-sized problems of enormous size. Initially, reconfigurable hardware tools provided a promising avenue to accelerating SAT solving over traditional software based solutions. However, the level of sophistication of software solvers overcame their hardware counterparts, which remained limited to smaller problem instances. Even so, modern state-of-the-art software solvers still fail unpredictably on some instances. The main focus of this thesis is to explore solving SAT on reconfigurable hardware in order to gain an understanding of what would be essential ingredients to add (and discard) to a very efficient hardware SAT solver that obtains its processing power from the raw parallelism of an FPGA platform. The parallel prototype solver that was implemented in this work has been found to be comparable with other hardware and software solvers in terms of execution speed even though no heuristics or other helping techniques were implemented. We thus show that our approach provides a very promising avenue to solving large, industrial SAT instances that might be difficult to handle by software solvers

    Breaking Instance-Independent Symmetries In Exact Graph Coloring

    Full text link
    Code optimization and high level synthesis can be posed as constraint satisfaction and optimization problems, such as graph coloring used in register allocation. Graph coloring is also used to model more traditional CSPs relevant to AI, such as planning, time-tabling and scheduling. Provably optimal solutions may be desirable for commercial and defense applications. Additionally, for applications such as register allocation and code optimization, naturally-occurring instances of graph coloring are often small and can be solved optimally. A recent wave of improvements in algorithms for Boolean satisfiability (SAT) and 0-1 Integer Linear Programming (ILP) suggests generic problem-reduction methods, rather than problem-specific heuristics, because (1) heuristics may be upset by new constraints, (2) heuristics tend to ignore structure, and (3) many relevant problems are provably inapproximable. Problem reductions often lead to highly symmetric SAT instances, and symmetries are known to slow down SAT solvers. In this work, we compare several avenues for symmetry breaking, in particular when certain kinds of symmetry are present in all generated instances. Our focus on reducing CSPs to SAT allows us to leverage recent dramatic improvement in SAT solvers and automatically benefit from future progress. We can use a variety of black-box SAT solvers without modifying their source code because our symmetry-breaking techniques are static, i.e., we detect symmetries and add symmetry breaking predicates (SBPs) during pre-processing. An important result of our work is that among the types of instance-independent SBPs we studied and their combinations, the simplest and least complete constructions are the most effective. Our experiments also clearly indicate that instance-independent symmetries should mostly be processed together with instance-specific symmetries rather than at the specification level, contrary to what has been suggested in the literature

    Enabling Runtime Self-Coordination of Reconfigurable Embedded Smart Cameras in Distributed Networks

    Get PDF
    Smart camera networks are real-time distributed embedded systems able to perform computer vision using multiple cameras. This new approach is a confluence of four major disciplines (computer vision, image sensors, embedded computing and sensor networks) and has been subject of intensive work in the past decades. The recent advances in computer vision and network communication, and the rapid growing in the field of high-performance computing, especially using reconfigurable devices, have enabled the design of more robust smart camera systems. Despite these advancements, the effectiveness of current networked vision systems (compared to their operating costs) is still disappointing; the main reason being the poor coordination among cameras entities at runtime and the lack of a clear formalism to dynamically capture and address the self-organization problem without relying on human intervention. In this dissertation, we investigate the use of a declarative-based modeling approach for capturing runtime self-coordination. We combine modeling approaches borrowed from logic programming, computer vision techniques, and high-performance computing for the design of an autonomous and cooperative smart camera. We propose a compact modeling approach based on Answer Set Programming for architecture synthesis of a system-on-reconfigurable-chip camera that is able to support the runtime cooperative work and collaboration with other camera nodes in a distributed network setup. Additionally, we propose a declarative approach for modeling runtime camera self-coordination for distributed object tracking in which moving targets are handed over in a distributed manner and recovered in case of node failure

    Synthesis of FPGA-based accelerators implementing recursive algorithms

    Get PDF
    Doutoramento em Engenharia InformáticaO desenvolvimento de sistemas computacionais é um processo complexo, com múltiplas etapas, que requer uma análise profunda do problema, levando em consideração as limitações e os requisitos aplicáveis. Tal tarefa envolve a exploração de técnicas alternativas e de algoritmos computacionais para optimizar o sistema e satisfazer os requisitos estabelecidos. Neste contexto, uma das mais importantes etapas é a análise e implementação de algoritmos computacionais. Enormes avanços tecnológicos no âmbito das FPGAs (Field-Programmable Gate Arrays) tornaram possível o desenvolvimento de sistemas de engenharia extremamente complexos. Contudo, o número de transístores disponíveis por chip está a crescer mais rapidamente do que a capacidade que temos para desenvolver sistemas que tirem proveito desse crescimento. Esta limitação já bem conhecida, antes de se revelar com FPGAs, já se verificava com ASICs (Application-Specific Integrated Circuits) e tem vindo a aumentar continuamente. O desenvolvimento de sistemas com base em FPGAs de alta capacidade envolve uma grande variedade de ferramentas, incluindo métodos para a implementação eficiente de algoritmos computacionais. Esta tese pretende proporcionar uma contribuição nesta área, tirando partido da reutilização, do aumento do nível de abstracção e de especificações algorítmicas mais automatizadas e claras. Mais especificamente, é apresentado um estudo que foi levado a cabo no sentido de obter critérios relativos à implementação em hardware de algoritmos recursivos versus iterativos. Depois de serem apresentadas algumas das estratégias para implementar recursividade em hardware mais significativas, descreve-se, em pormenor, um conjunto de algoritmos para resolver problemas de pesquisa combinatória (considerados enquanto exemplos de aplicação). Versões recursivas e iterativas destes algoritmos foram implementados e testados em FPGA. Com base nos resultados obtidos, é feita uma cuidada análise comparativa. Novas ferramentas e técnicas de investigação que foram desenvolvidas no âmbito desta tese são também discutidas e demonstradas.Design of computational systems is a complex multistage process which requires a deep analysis of the problem, taking into account relevant limitations and constraints as well as software/hardware co-design. Such task involves exploring competitive techniques and computational algorithms, enabling the system to be optimized while satisfying given requirements. In this context, one of the most important stages is analysis and implementation of computational algorithms. Tremendous progress in the scope of FPGA (Field-Programmable Gate Array) technology has made it possible to design very complicated engineering systems. However, the number of available transistors grows faster than the ability to meaningfully design with them. This situation is a well known design productivity gap, which was inherited by FPGA from ASIC (Application-Specific Integrated Circuit) and which is increasing continuously. Developing engineering systems on the basis of high capacity FPGAs involves a wide variety of design tools, including methods for efficient implementation of computational algorithms. The thesis is intended to provide a contribution in this area by aiming at reuse, high level abstraction, automation, and clearness of algorithmic specifications. More specifically, it presents research studies which have been carried out in order to obtain criteria regarding implementation of recursive vs. iterative algorithms in hardware. After describing some of the most relevant strategies for implementing recursion in hardware, a selection of algorithms for solving combinatorial search problems (considered as application examples) are also described in detail. Iterative and recursive versions of these algorithms have been implemented and tested in FPGA. Taking into consideration the results obtained, a careful comparative analysis is given. New research-oriented tools and techniques for hardware design which have been developed in the scope of this thesis are also discussed and demonstrated

    FIR filter optimization for video processing on FPGAs

    Get PDF

    Precision analysis for hardware acceleration of numerical algorithms

    No full text
    The precision used in an algorithm affects the error and performance of individual computations, the memory usage, and the potential parallelism for a fixed hardware budget. However, when migrating an algorithm onto hardware, the potential improvements that can be obtained by tuning the precision throughout an algorithm to meet a range or error specification are often overlooked; the major reason is that it is hard to choose a number system which can guarantee any such specification can be met. Instead, the problem is mitigated by opting to use IEEE standard double precision arithmetic so as to be ‘no worse’ than a software implementation. However, the flexibility in the number representation is one of the key factors that can be exploited on reconfigurable hardware such as FPGAs, and hence ignoring this potential significantly limits the performance achievable. In order to optimise the performance of hardware reliably, we require a method that can tractably calculate tight bounds for the error or range of any variable within an algorithm, but currently only a handful of methods to calculate such bounds exist, and these either sacrifice tightness or tractability, whilst simulation-based methods cannot guarantee the given error estimate. This thesis presents a new method to calculate these bounds, taking into account both input ranges and finite precision effects, which we show to be, in general, tighter in comparison to existing methods; this in turn can be used to tune the hardware to the algorithm specifications. We demonstrate the use of this software to optimise hardware for various algorithms to accelerate the solution of a system of linear equations, which forms the basis of many problems in engineering and science, and show that significant performance gains can be obtained by using this new approach in conjunction with more traditional hardware optimisations
    • …
    corecore