9,631 research outputs found

    A Light Weight Smartphone Based Human Activity Recognition System with High Accuracy

    Get PDF
    With the pervasive use of smartphones, which contain numerous sensors, data for modeling human activity is readily available. Human activity recognition is an important area of research because it can be used in context-aware applications. It has significant influence in many other research areas and applications including healthcare, assisted living, personal fitness, and entertainment. There has been a widespread use of machine learning techniques in wearable and smartphone based human activity recognition. Despite being an active area of research for more than a decade, most of the existing approaches require extensive computation to extract feature, train model, and recognize activities. This study presents a computationally efficient smartphone based human activity recognizer, based on dynamical systems and chaos theory. A reconstructed phase space is formed from the accelerometer sensor data using time-delay embedding. A single accelerometer axis is used to reduce memory and computational complexity. A Gaussian mixture model is learned on the reconstructed phase space. A maximum likelihood classifier uses the Gaussian mixture model to classify ten different human activities and a baseline. One public and one collected dataset were used to validate the proposed approach. Data was collected from ten subjects. The public dataset contains data from 30 subjects. Out-of-sample experimental results show that the proposed approach is able to recognize human activities from smartphones’ one-axis raw accelerometer sensor data. The proposed approach achieved 100% accuracy for individual models across all activities and datasets. The proposed research requires 3 to 7 times less amount of data than the existing approaches to classify activities. It also requires 3 to 4 times less amount of time to build reconstructed phase space compare to time and frequency domain features. A comparative evaluation is also presented to compare proposed approach with the state-of-the-art works

    Deep HMResNet Model for Human Activity-Aware Robotic Systems

    Full text link
    Endowing the robotic systems with cognitive capabilities for recognizing daily activities of humans is an important challenge, which requires sophisticated and novel approaches. Most of the proposed approaches explore pattern recognition techniques which are generally based on hand-crafted features or learned features. In this paper, a novel Hierarchal Multichannel Deep Residual Network (HMResNet) model is proposed for robotic systems to recognize daily human activities in the ambient environments. The introduced model is comprised of multilevel fusion layers. The proposed Multichannel 1D Deep Residual Network model is, at the features level, combined with a Bottleneck MLP neural network to automatically extract robust features regardless of the hardware configuration and, at the decision level, is fully connected with an MLP neural network to recognize daily human activities. Empirical experiments on real-world datasets and an online demonstration are used for validating the proposed model. Results demonstrated that the proposed model outperforms the baseline models in daily human activity recognition.Comment: Presented at AI-HRI AAAI-FSS, 2018 (arXiv:1809.06606

    Human activity recognition making use of long short-term memory techniques

    Get PDF
    The optimisation and validation of a classifiers performance when applied to real world problems is not always effectively shown. In much of the literature describing the application of artificial neural network architectures to Human Activity Recognition (HAR) problems, postural transitions are grouped together and treated as a singular class. This paper proposes, investigates and validates the development of an optimised artificial neural network based on Long-Short Term Memory techniques (LSTM), with repeated cross validation used to validate the performance of the classifier. The results of the optimised LSTM classifier are comparable or better to that of previous research making use of the same dataset, achieving 95% accuracy under repeated 10-fold cross validation using grouped postural transitions. The work in this paper also achieves 94% accuracy under repeated 10-fold cross validation whilst treating each common postural transition as a separate class (and thus providing more context to each activity)

    Optimized Gated Deep Learning Architectures for Sensor Fusion

    Full text link
    Sensor fusion is a key technology that integrates various sensory inputs to allow for robust decision making in many applications such as autonomous driving and robot control. Deep neural networks have been adopted for sensor fusion in a body of recent studies. Among these, the so-called netgated architecture was proposed, which has demonstrated improved performances over the conventional convolutional neural networks (CNN). In this paper, we address several limitations of the baseline negated architecture by proposing two further optimized architectures: a coarser-grained gated architecture employing (feature) group-level fusion weights and a two-stage gated architectures leveraging both the group-level and feature level fusion weights. Using driving mode prediction and human activity recognition datasets, we demonstrate the significant performance improvements brought by the proposed gated architectures and also their robustness in the presence of sensor noise and failures.Comment: 10 pages, 5 figures. Submitted to ICLR 201

    Transportation mode recognition fusing wearable motion, sound and vision sensors

    Get PDF
    We present the first work that investigates the potential of improving the performance of transportation mode recognition through fusing multimodal data from wearable sensors: motion, sound and vision. We first train three independent deep neural network (DNN) classifiers, which work with the three types of sensors, respectively. We then propose two schemes that fuse the classification results from the three mono-modal classifiers. The first scheme makes an ensemble decision with fixed rules including Sum, Product, Majority Voting, and Borda Count. The second scheme is an adaptive fuser built as another classifier (including Naive Bayes, Decision Tree, Random Forest and Neural Network) that learns enhanced predictions by combining the outputs from the three mono-modal classifiers. We verify the advantage of the proposed method with the state-of-the-art Sussex-Huawei Locomotion and Transportation (SHL) dataset recognizing the eight transportation activities: Still, Walk, Run, Bike, Bus, Car, Train and Subway. We achieve F1 scores of 79.4%, 82.1% and 72.8% with the mono-modal motion, sound and vision classifiers, respectively. The F1 score is remarkably improved to 94.5% and 95.5% by the two data fusion schemes, respectively. The recognition performance can be further improved with a post-processing scheme that exploits the temporal continuity of transportation. When assessing generalization of the model to unseen data, we show that while performance is reduced - as expected - for each individual classifier, the benefits of fusion are retained with performance improved by 15 percentage points. Besides the actual performance increase, this work, most importantly, opens up the possibility for dynamically fusing modalities to achieve distinct power-performance trade-off at run time

    Human activity recognition on smartphones using a multiclass hardware-friendly support vector machine

    Get PDF
    Activity-Based Computing aims to capture the state of the user and its environment by exploiting heterogeneous sensors in order to provide adaptation to exogenous computing resources. When these sensors are attached to the subject’s body, they permit continuous monitoring of numerous physiological signals. This has appealing use in healthcare applications, e.g. the exploitation of Ambient Intelligence (AmI) in daily activity monitoring for elderly people. In this paper, we present a system for human physical Activity Recognition (AR) using smartphone inertial sensors. As these mobile phones are limited in terms of energy and computing power, we propose a novel hardware-friendly approach for multiclass classification. This method adapts the standard Support Vector Machine (SVM) and exploits fixed-point arithmetic for computational cost reduction. A comparison with the traditional SVM shows a significant improvement in terms of computational costs while maintaining similar accuracy, which can contribute to develop more sustainable systems for AmI.Peer ReviewedPostprint (author's final draft

    PinMe: Tracking a Smartphone User around the World

    Full text link
    With the pervasive use of smartphones that sense, collect, and process valuable information about the environment, ensuring location privacy has become one of the most important concerns in the modern age. A few recent research studies discuss the feasibility of processing data gathered by a smartphone to locate the phone's owner, even when the user does not intend to share his location information, e.g., when the Global Positioning System (GPS) is off. Previous research efforts rely on at least one of the two following fundamental requirements, which significantly limit the ability of the adversary: (i) the attacker must accurately know either the user's initial location or the set of routes through which the user travels and/or (ii) the attacker must measure a set of features, e.g., the device's acceleration, for potential routes in advance and construct a training dataset. In this paper, we demonstrate that neither of the above-mentioned requirements is essential for compromising the user's location privacy. We describe PinMe, a novel user-location mechanism that exploits non-sensory/sensory data stored on the smartphone, e.g., the environment's air pressure, along with publicly-available auxiliary information, e.g., elevation maps, to estimate the user's location when all location services, e.g., GPS, are turned off.Comment: This is the preprint version: the paper has been published in IEEE Trans. Multi-Scale Computing Systems, DOI: 0.1109/TMSCS.2017.275146
    • …
    corecore