24 research outputs found

    Ethereum Blockchain and HyperLedger Burrow Blockchain Comparative Analysis

    Get PDF
    KaĢˆesolevas bakalaureusetoĢˆoĢˆs tutvustatakse plokiahela tehnoloogiat, voĢƒrreldakse kahte erinevat platvormi, Ethereum ja Hyperledger Burrow, luukse kaks detsentraalsed rakendust ning viimasena analuĢˆuĢˆsitakse, kas on praktiline rakendada Hyperledger Burrow platvormi keerukamatele rakendustele nagu naĢˆiteks Caterpillar. ToĢˆoĢˆ raames tutvustatakse plokiahela ja hajusraamatu tehnoloogiaid. JaĢˆrgnevalt selgitatakse miks ja mis poĢƒhjustel antud tehnoloogiad voĢƒrdleva analuĢˆuĢˆsi tegemiseks valiti. AnaluĢˆuĢˆs poĢƒhineb kahe naĢˆidisrakenduse voĢƒrdlemisel, naĢˆidates mis on peamised erinevused ja sarnasused Ethereum ja Hyperledger Burrow vahel.This bachelorā€™s thesis aims is to introduce the blockchain technology, provide a comparative analysis of two different platforms Ethereum and Hyperledger Burrow, by creating two decentralized applications, and finally analyses if it is practical to implement Hyperledger Burrow to more complex applications like Caterpillar. At the beginning a brief explanation of blockchain, distributed ledger technologies is given with other related terminology. Then it is explained why and what was the motivation of selecting these technologies. More is depth comparative analysis in conducted based on example applications, showing what are the main differences and similarities between Ethereum and Hyperledger Burrow

    SoK: Blockchain Light Clients

    Get PDF
    Blockchain systems, as append-only ledgers, are typically associated with linearly growing participation costs. Therefore, for a blockchain client to interact with the system (query or submit a transaction), it can either pay these costs by downloading, storing and verifying the blockchain history, or forfeit blockchain security guarantees and place its trust on third party intermediary servers. With this problem becoming apparent from early works in the blockchain space, the concept of a light client has been proposed, where a resource-constrained client such as a browser or mobile device can participate in the system by querying and/or submitting transactions without holding the full blockchain but while still inheriting the blockchain\u27s security guarantees. A plethora of blockchain systems with different light client frameworks and implementations have been proposed, each with different functionalities, assumptions and efficiencies. In this work we provide a systematization of such light client designs. We unify the space by providing a set of definitions on their properties in terms of provided functionality, efficiency and security, and provide future research directions based on our findings

    BLOCKGRID: A BLOCKCHAIN-MEDIATED CYBER-PHYSICAL INSTRUCTIONAL PLATFORM

    Get PDF
    Includes supplementary material, which may be found at https://calhoun.nps.edu/handle/10945/66767Blockchain technology has garnered significant attention for its disruptive potential in several domains of national security interest. For the United States government to meet the challenge of incorporating blockchain technology into its IT infrastructure and cyber warfare strategy, personnel must be educated about blockchain technology and its applications. This thesis presents both the design and prototype implementation for a blockchain-mediated cyber-physical system called a BlockGrid. The system consists of a cluster of microcomputers that form a simple smart grid controlled by smart contracts on a private blockchain. The microcomputers act as private blockchain nodes and are programmed to activate microcomputer-attached circuits in response to smart-contract transactions. LEDs are used as visible circuit elements that serve as indicators of the blockchainā€™s activity and allow demonstration of the technology to observers. Innovations in networking configuration and physical layout allow the prototype to be highly portable and pre-configured for use upon assembly. Implementation options allow the use of BlockGrid in a variety of instructional settings, thus increasing its potential benefit to educators.Civilian, CyberCorps: Scholarship for ServiceApproved for public release. distribution is unlimite

    Blockchain smart contracts: Applications, challenges, and future trends

    Get PDF
    In recent years, the rapid development of blockchain technology and cryptocurrencies has influenced the financial industry by creating a new crypto-economy. Then, next-generation decentralized applications without involving a trusted third-party have emerged thanks to the appearance of smart contracts, which are computer protocols designed to facilitate, verify, and enforce automatically the negotiation and agreement among multiple untrustworthy parties. Despite the bright side of smart contracts, several concerns continue to undermine their adoption, such as security threats, vulnerabilities, and legal issues. In this paper, we present a comprehensive survey of blockchain-enabled smart contracts from both technical and usage points of view. To do so, we present a taxonomy of existing blockchain-enabled smart contract solutions, categorize the included research papers, and discuss the existing smart contract-based studies. Based on the findings from the survey, we identify a set of challenges and open issues that need to be addressed in future studies. Finally, we identify future trends

    SoK: A Taxonomy of Cryptocurrency Wallets

    Get PDF
    The primary function of a cryptocurrency is money transfer between individuals. The wallet is the software that facilitates such transfers. Wallets are nowadays ubiquitous in the cryptocurrency space and a cryptocurrency is usually supported by many wallets. Despite that, the functionality of wallets has never been formally defined. Additionally, the mechanisms employed by the many wallets in the wild remain hidden in their respective codebases. In this work we provide the first definition of a cryptocurrency wallet, which we model as a client to a server, or set of servers. We provide a distinction of wallets in various categories, based on whether they work for transparent or private cryptocurrencies, what trust assumptions they require, their performance and their communication overhead. For each type of wallet we provide a description of its client and server protocols. Additionally, we explore superlight wallets and describe their difference to superlight clients that have appeared in recent literature. We demonstrate how new wallet protocols can be produced by combining concepts from existing protocols. Finally we evaluate the performance and security characteristics of all wallet protocols and compare them

    Bringing Order into Things Decentralized and Scalable Ledgering for the Internet-of-Things

    Get PDF
    The Internet-of-Things (IoT) is simultaneously the largest and the fastest growing distributed system known to date. With the expectation of 50 billion of devices coming online by 2020, far surpassing the size of the human population, problems related to scale, trustability and security are anticipated. Current IoT architectures are inherently flawed as they are centralized on the cloud and explore fragile trust-based relationships over a plethora of loosely integrated devices, leading to IoT platforms being non-robust for every party involved and unable to scale properly in the near future. The need for a new architecture that addresses these concerns is urgent as the IoT is progressively more ubiquitous, pervasive and demanding regarding the integration of devices and processing of data increasingly susceptible to reliability and security issues. In this thesis, we propose a decentralized ledgering solution for the IoT, leveraging a recent concept: blockchains. Rather than replacing the cloud, our solution presents a scalable and fault-tolerant middleware for recording transactions between peers, under verifiable and decentralized trustability assumptions and authentication guarantees for IoT devices, cloud services and users. Following on the emergent trend in modern IoT architectures, we leverage smart hubs as blockchain gateways, aggregating, pre-processing and forwarding small amounts of data and transactions in proximity conditions, that will be verified and processed as transactions in the blockchain. The proposed middleware acts as a secure ledger and establishes private channels between peers, requiring transactions in the blockchain to be signed using threshold signature schemes and grouporiented verification properties. The approach improves the decentralization and robustness characteristics under Byzantine fault-tolerance settings, while preserving the blockchain distributed nature

    FinBook: literary content as digital commodity

    Get PDF
    This short essay explains the significance of the FinBook intervention, and invites the reader to participate. We have associated each chapter within this book with a financial robot (FinBot), and created a market whereby book content will be traded with financial securities. As human labour increasingly consists of unstable and uncertain work practices and as algorithms replace people on the virtual trading floors of the worlds markets, we see members of society taking advantage of FinBots to invest and make extra funds. Bots of all kinds are making financial decisions for us, searching online on our behalf to help us invest, to consume products and services. Our contribution to this compilation is to turn the collection of chapters in this book into a dynamic investment portfolio, and thereby play out what might happen to the process of buying and consuming literature in the not-so-distant future. By attaching identities (through QR codes) to each chapter, we create a market in which the chapter can ā€˜performā€™. Our FinBots will trade based on features extracted from the authorsā€™ words in this book: the political, ethical and cultural values embedded in the work, and the extent to which the FinBots share authorsā€™ concerns; and the performance of chapters amongst those human and non-human actors that make up the market, and readership. In short, the FinBook model turns our work and the work of our co-authors into an investment portfolio, mediated by the market and the attention of readers. By creating a digital economy specifically around the content of online texts, our chapter and the FinBook platform aims to challenge the reader to consider how their personal values align them with individual articles, and how these become contested as they perform different value judgements about the financial performance of each chapter and the book as a whole. At the same time, by introducing ā€˜autonomousā€™ trading bots, we also explore the different ā€˜networkā€™ affordances that differ between paper based books thatā€™s scarcity is developed through analogue form, and digital forms of books whose uniqueness is reached through encryption. We thereby speak to wider questions about the conditions of an aggressive market in which algorithms subject cultural and intellectual items ā€“ books ā€“ to economic parameters, and the increasing ubiquity of data bots as actors in our social, political, economic and cultural lives. We understand that our marketization of literature may be an uncomfortable juxtaposition against the conventionally-imagined way a book is created, enjoyed and shared: it is intended to be

    Big Data and Artificial Intelligence in Digital Finance

    Get PDF
    This open access book presents how cutting-edge digital technologies like Big Data, Machine Learning, Artificial Intelligence (AI), and Blockchain are set to disrupt the financial sector. The book illustrates how recent advances in these technologies facilitate banks, FinTech, and financial institutions to collect, process, analyze, and fully leverage the very large amounts of data that are nowadays produced and exchanged in the sector. To this end, the book also describes some more the most popular Big Data, AI and Blockchain applications in the sector, including novel applications in the areas of Know Your Customer (KYC), Personalized Wealth Management and Asset Management, Portfolio Risk Assessment, as well as variety of novel Usage-based Insurance applications based on Internet-of-Things data. Most of the presented applications have been developed, deployed and validated in real-life digital finance settings in the context of the European Commission funded INFINITECH project, which is a flagship innovation initiative for Big Data and AI in digital finance. This book is ideal for researchers and practitioners in Big Data, AI, banking and digital finance
    corecore