9,837 research outputs found

    A Pseudorandom Generator from any One-way Function

    Full text link

    Guaranteeing the diversity of number generators

    Get PDF
    A major problem in using iterative number generators of the form x_i=f(x_{i-1}) is that they can enter unexpectedly short cycles. This is hard to analyze when the generator is designed, hard to detect in real time when the generator is used, and can have devastating cryptanalytic implications. In this paper we define a measure of security, called_sequence_diversity_, which generalizes the notion of cycle-length for non-iterative generators. We then introduce the class of counter assisted generators, and show how to turn any iterative generator (even a bad one designed or seeded by an adversary) into a counter assisted generator with a provably high diversity, without reducing the quality of generators which are already cryptographically strong.Comment: Small update

    Panphasia: a user guide

    Full text link
    We make a very large realisation of a Gaussian white noise field, called PANPHASIA, public by releasing software that computes this field. Panphasia is designed specifically for setting up Gaussian initial conditions for cosmological simulations and resimulations of structure formation. We make available both software to compute the field itself and codes to illustrate applications including a modified version of a public serial initial conditions generator. We document the software and present the results of a few basic tests of the field. The properties and method of construction of Panphasia are described in full in a companion paper Jenkins 2013.Comment: 11 pages, 2 figures. Software to calculate Panphasia is available from: http://icc.dur.ac.uk/Panphasia.ph

    Pseudorandomness for Regular Branching Programs via Fourier Analysis

    Full text link
    We present an explicit pseudorandom generator for oblivious, read-once, permutation branching programs of constant width that can read their input bits in any order. The seed length is O(log2n)O(\log^2 n), where nn is the length of the branching program. The previous best seed length known for this model was n1/2+o(1)n^{1/2+o(1)}, which follows as a special case of a generator due to Impagliazzo, Meka, and Zuckerman (FOCS 2012) (which gives a seed length of s1/2+o(1)s^{1/2+o(1)} for arbitrary branching programs of size ss). Our techniques also give seed length n1/2+o(1)n^{1/2+o(1)} for general oblivious, read-once branching programs of width 2no(1)2^{n^{o(1)}}, which is incomparable to the results of Impagliazzo et al.Our pseudorandom generator is similar to the one used by Gopalan et al. (FOCS 2012) for read-once CNFs, but the analysis is quite different; ours is based on Fourier analysis of branching programs. In particular, we show that an oblivious, read-once, regular branching program of width ww has Fourier mass at most (2w2)k(2w^2)^k at level kk, independent of the length of the program.Comment: RANDOM 201

    Pseudorandomness and the Minimum Circuit Size Problem

    Get PDF
    corecore