7,489 research outputs found

    Four moments theorems on Markov chains

    Full text link
    We obtain quantitative Four Moments Theorems establishing convergence of the laws of elements of a Markov chaos to a Pearson distribution, where the only assumptionwemake on the Pearson distribution is that it admits four moments. While in general one cannot use moments to establish convergence to a heavy-tailed distributions, we provide a context in which only the first four moments suffices. These results are obtained by proving a general carré du champ bound on the distance between laws of random variables in the domain of a Markov diffusion generator and invariant measures of diffusions. For elements of a Markov chaos, this bound can be reduced to just the first four moments.First author draf

    Four moments theorems on Markov chaos

    Get PDF
    We obtain quantitative Four Moments Theorems establishing convergence of the laws of elements of a Markov chaos to a Pearson distribution, where the only assumption we make on the Pearson distribution is that it admits four moments. While in general one cannot use moments to establish convergence to a heavy-tailed distributions, we provide a context in which only the first four moments suffices. These results are obtained by proving a general carr\'e du champ bound on the distance between laws of random variables in the domain of a Markov diffusion generator and invariant measures of diffusions. For elements of a Markov chaos, this bound can be reduced to just the first four moments.Comment: 24 page

    New insights on stochastic reachability

    Get PDF
    In this paper, we give new characterizations of the stochastic reachability problem for stochastic hybrid systems in the language of different theories that can be employed in studying stochastic processes (Markov processes, potential theory, optimal control). These characterizations are further used to obtain the probabilities involved in the context of stochastic reachability as viscosity solutions of some variational inequalities

    Donsker theorems for diffusions: Necessary and sufficient conditions

    Get PDF
    We consider the empirical process G_t of a one-dimensional diffusion with finite speed measure, indexed by a collection of functions F. By the central limit theorem for diffusions, the finite-dimensional distributions of G_t converge weakly to those of a zero-mean Gaussian random process G. We prove that the weak convergence G_t\Rightarrow G takes place in \ell^{\infty}(F) if and only if the limit G exists as a tight, Borel measurable map. The proof relies on majorizing measure techniques for continuous martingales. Applications include the weak convergence of the local time density estimator and the empirical distribution function on the full state space.Comment: Published at http://dx.doi.org/10.1214/009117905000000152 in the Annals of Probability (http://www.imstat.org/aop/) by the Institute of Mathematical Statistics (http://www.imstat.org
    corecore