14,405 research outputs found

    Post-training discriminative pruning for RBMs

    Get PDF
    One of the major challenges in the area of artificial neural networks is the identification of a suitable architecture for a specific problem. Choosing an unsuitable topology can exponentially increase the training cost, and even hinder network convergence. On the other hand, recent research indicates that larger or deeper nets can map the problem features into a more appropriate space, and thereby improve the classification process, thus leading to an apparent dichotomy. In this regard, it is interesting to inquire whether independent measures, such as mutual information, could provide a clue to finding the most discriminative neurons in a network. In the present work we explore this question in the context of Restricted Boltzmann Machines, by employing different measures to realize post-training pruning. The neurons which are determined by each measure to be the most discriminative, are combined and a classifier is applied to the ensuing network to determine its usefulness. We find that two measures in particular seem to be good indicators of the most discriminative neurons, producing savings of generally more than 50% of the neurons, while maintaining an acceptable error rate. Further, it is borne out that starting with a larger network architecture and then pruning is more advantageous than using a smaller network to begin with. Finally, a quantitative index is introduced which can provide information on choosing a suitable pruned network.Fil: Sánchez Gutiérrez, Máximo. Universidad Autónoma Metropolitana; MéxicoFil: Albornoz, Enrique Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; ArgentinaFil: Rufiner, Hugo Leonardo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional. Universidad Nacional del Litoral. Facultad de Ingeniería y Ciencias Hídricas. Instituto de Investigación en Señales, Sistemas e Inteligencia Computacional; Argentina. Universidad Nacional de Entre Ríos; ArgentinaFil: Close, John Goddard. Universidad Autónoma Metropolitana; Méxic

    Pruning training sets for learning of object categories

    Get PDF
    Training datasets for learning of object categories are often contaminated or imperfect. We explore an approach to automatically identify examples that are noisy or troublesome for learning and exclude them from the training set. The problem is relevant to learning in semi-supervised or unsupervised setting, as well as to learning when the training data is contaminated with wrongly labeled examples or when correctly labeled, but hard to learn examples, are present. We propose a fully automatic mechanism for noise cleaning, called ’data pruning’, and demonstrate its success on learning of human faces. It is not assumed that the data or the noise can be modeled or that additional training examples are available. Our experiments show that data pruning can improve on generalization performance for algorithms with various robustness to noise. It outperforms methods with regularization properties and is superior to commonly applied aggregation methods, such as bagging

    RMSE-ELM: Recursive Model based Selective Ensemble of Extreme Learning Machines for Robustness Improvement

    Get PDF
    Extreme learning machine (ELM) as an emerging branch of shallow networks has shown its excellent generalization and fast learning speed. However, for blended data, the robustness of ELM is weak because its weights and biases of hidden nodes are set randomly. Moreover, the noisy data exert a negative effect. To solve this problem, a new framework called RMSE-ELM is proposed in this paper. It is a two-layer recursive model. In the first layer, the framework trains lots of ELMs in different groups concurrently, then employs selective ensemble to pick out an optimal set of ELMs in each group, which can be merged into a large group of ELMs called candidate pool. In the second layer, selective ensemble is recursively used on candidate pool to acquire the final ensemble. In the experiments, we apply UCI blended datasets to confirm the robustness of our new approach in two key aspects (mean square error and standard deviation). The space complexity of our method is increased to some degree, but the results have shown that RMSE-ELM significantly improves robustness with slightly computational time compared with representative methods (ELM, OP-ELM, GASEN-ELM, GASEN-BP and E-GASEN). It becomes a potential framework to solve robustness issue of ELM for high-dimensional blended data in the future.Comment: Accepted for publication in Mathematical Problems in Engineering, 09/22/201
    corecore