4,538 research outputs found

    Implicit Sensor-based Authentication of Smartphone Users with Smartwatch

    Full text link
    Smartphones are now frequently used by end-users as the portals to cloud-based services, and smartphones are easily stolen or co-opted by an attacker. Beyond the initial log-in mechanism, it is highly desirable to re-authenticate end-users who are continuing to access security-critical services and data, whether in the cloud or in the smartphone. But attackers who have gained access to a logged-in smartphone have no incentive to re-authenticate, so this must be done in an automatic, non-bypassable way. Hence, this paper proposes a novel authentication system, iAuth, for implicit, continuous authentication of the end-user based on his or her behavioral characteristics, by leveraging the sensors already ubiquitously built into smartphones. We design a system that gives accurate authentication using machine learning and sensor data from multiple mobile devices. Our system can achieve 92.1% authentication accuracy with negligible system overhead and less than 2% battery consumption.Comment: Published in Hardware and Architectural Support for Security and Privacy (HASP), 201

    Survey and Systematization of Secure Device Pairing

    Full text link
    Secure Device Pairing (SDP) schemes have been developed to facilitate secure communications among smart devices, both personal mobile devices and Internet of Things (IoT) devices. Comparison and assessment of SDP schemes is troublesome, because each scheme makes different assumptions about out-of-band channels and adversary models, and are driven by their particular use-cases. A conceptual model that facilitates meaningful comparison among SDP schemes is missing. We provide such a model. In this article, we survey and analyze a wide range of SDP schemes that are described in the literature, including a number that have been adopted as standards. A system model and consistent terminology for SDP schemes are built on the foundation of this survey, which are then used to classify existing SDP schemes into a taxonomy that, for the first time, enables their meaningful comparison and analysis.The existing SDP schemes are analyzed using this model, revealing common systemic security weaknesses among the surveyed SDP schemes that should become priority areas for future SDP research, such as improving the integration of privacy requirements into the design of SDP schemes. Our results allow SDP scheme designers to create schemes that are more easily comparable with one another, and to assist the prevention of persisting the weaknesses common to the current generation of SDP schemes.Comment: 34 pages, 5 figures, 3 tables, accepted at IEEE Communications Surveys & Tutorials 2017 (Volume: PP, Issue: 99

    PIANO: Proximity-based User Authentication on Voice-Powered Internet-of-Things Devices

    Full text link
    Voice is envisioned to be a popular way for humans to interact with Internet-of-Things (IoT) devices. We propose a proximity-based user authentication method (called PIANO) for access control on such voice-powered IoT devices. PIANO leverages the built-in speaker, microphone, and Bluetooth that voice-powered IoT devices often already have. Specifically, we assume that a user carries a personal voice-powered device (e.g., smartphone, smartwatch, or smartglass), which serves as the user's identity. When another voice-powered IoT device of the user requires authentication, PIANO estimates the distance between the two devices by playing and detecting certain acoustic signals; PIANO grants access if the estimated distance is no larger than a user-selected threshold. We implemented a proof-of-concept prototype of PIANO. Through theoretical and empirical evaluations, we find that PIANO is secure, reliable, personalizable, and efficient.Comment: To appear in ICDCS'1

    DoubleEcho: Mitigating Context-Manipulation Attacks in Copresence Verification

    Full text link
    Copresence verification based on context can improve usability and strengthen security of many authentication and access control systems. By sensing and comparing their surroundings, two or more devices can tell whether they are copresent and use this information to make access control decisions. To the best of our knowledge, all context-based copresence verification mechanisms to date are susceptible to context-manipulation attacks. In such attacks, a distributed adversary replicates the same context at the (different) locations of the victim devices, and induces them to believe that they are copresent. In this paper we propose DoubleEcho, a context-based copresence verification technique that leverages acoustic Room Impulse Response (RIR) to mitigate context-manipulation attacks. In DoubleEcho, one device emits a wide-band audible chirp and all participating devices record reflections of the chirp from the surrounding environment. Since RIR is, by its very nature, dependent on the physical surroundings, it constitutes a unique location signature that is hard for an adversary to replicate. We evaluate DoubleEcho by collecting RIR data with various mobile devices and in a range of different locations. We show that DoubleEcho mitigates context-manipulation attacks whereas all other approaches to date are entirely vulnerable to such attacks. DoubleEcho detects copresence (or lack thereof) in roughly 2 seconds and works on commodity devices

    Active User Authentication for Smartphones: A Challenge Data Set and Benchmark Results

    Full text link
    In this paper, automated user verification techniques for smartphones are investigated. A unique non-commercial dataset, the University of Maryland Active Authentication Dataset 02 (UMDAA-02) for multi-modal user authentication research is introduced. This paper focuses on three sensors - front camera, touch sensor and location service while providing a general description for other modalities. Benchmark results for face detection, face verification, touch-based user identification and location-based next-place prediction are presented, which indicate that more robust methods fine-tuned to the mobile platform are needed to achieve satisfactory verification accuracy. The dataset will be made available to the research community for promoting additional research.Comment: 8 pages, 12 figures, 6 tables. Best poster award at BTAS 201

    PATH: Person Authentication using Trace Histories

    Full text link
    In this paper, a solution to the problem of Active Authentication using trace histories is addressed. Specifically, the task is to perform user verification on mobile devices using historical location traces of the user as a function of time. Considering the movement of a human as a Markovian motion, a modified Hidden Markov Model (HMM)-based solution is proposed. The proposed method, namely the Marginally Smoothed HMM (MSHMM), utilizes the marginal probabilities of location and timing information of the observations to smooth-out the emission probabilities while training. Hence, it can efficiently handle unforeseen observations during the test phase. The verification performance of this method is compared to a sequence matching (SM) method , a Markov Chain-based method (MC) and an HMM with basic Laplace Smoothing (HMM-lap). Experimental results using the location information of the UMD Active Authentication Dataset-02 (UMDAA02) and the GeoLife dataset are presented. The proposed MSHMM method outperforms the compared methods in terms of equal error rate (EER). Additionally, the effects of different parameters on the proposed method are discussed.Comment: 8 pages, 9 figures. Best Paper award at IEEE UEMCON 201
    corecore