696 research outputs found

    Fitting Jump Models

    Get PDF
    We describe a new framework for fitting jump models to a sequence of data. The key idea is to alternate between minimizing a loss function to fit multiple model parameters, and minimizing a discrete loss function to determine which set of model parameters is active at each data point. The framework is quite general and encompasses popular classes of models, such as hidden Markov models and piecewise affine models. The shape of the chosen loss functions to minimize determine the shape of the resulting jump model.Comment: Accepted for publication in Automatic

    Bundle-based pruning in the max-plus curse of dimensionality free method

    Full text link
    Recently a new class of techniques termed the max-plus curse of dimensionality-free methods have been developed to solve nonlinear optimal control problems. In these methods the discretization in state space is avoided by using a max-plus basis expansion of the value function. This requires storing only the coefficients of the basis functions used for representation. However, the number of basis functions grows exponentially with respect to the number of time steps of propagation to the time horizon of the control problem. This so called "curse of complexity" can be managed by applying a pruning procedure which selects the subset of basis functions that contribute most to the approximation of the value function. The pruning procedures described thus far in the literature rely on the solution of a sequence of high dimensional optimization problems which can become computationally expensive. In this paper we show that if the max-plus basis functions are linear and the region of interest in state space is convex, the pruning problem can be efficiently solved by the bundle method. This approach combining the bundle method and semidefinite formulations is applied to the quantum gate synthesis problem, in which the state space is the special unitary group (which is non-convex). This is based on the observation that the convexification of the unitary group leads to an exact relaxation. The results are studied and validated via examples

    Domain Decomposition for Stochastic Optimal Control

    Full text link
    This work proposes a method for solving linear stochastic optimal control (SOC) problems using sum of squares and semidefinite programming. Previous work had used polynomial optimization to approximate the value function, requiring a high polynomial degree to capture local phenomena. To improve the scalability of the method to problems of interest, a domain decomposition scheme is presented. By using local approximations, lower degree polynomials become sufficient, and both local and global properties of the value function are captured. The domain of the problem is split into a non-overlapping partition, with added constraints ensuring C1C^1 continuity. The Alternating Direction Method of Multipliers (ADMM) is used to optimize over each domain in parallel and ensure convergence on the boundaries of the partitions. This results in improved conditioning of the problem and allows for much larger and more complex problems to be addressed with improved performance.Comment: 8 pages. Accepted to CDC 201

    Polynomial Norms

    Get PDF
    In this paper, we study polynomial norms, i.e. norms that are the dthd^{\text{th}} root of a degree-dd homogeneous polynomial ff. We first show that a necessary and sufficient condition for f1/df^{1/d} to be a norm is for ff to be strictly convex, or equivalently, convex and positive definite. Though not all norms come from dthd^{\text{th}} roots of polynomials, we prove that any norm can be approximated arbitrarily well by a polynomial norm. We then investigate the computational problem of testing whether a form gives a polynomial norm. We show that this problem is strongly NP-hard already when the degree of the form is 4, but can always be answered by testing feasibility of a semidefinite program (of possibly large size). We further study the problem of optimizing over the set of polynomial norms using semidefinite programming. To do this, we introduce the notion of r-sos-convexity and extend a result of Reznick on sum of squares representation of positive definite forms to positive definite biforms. We conclude with some applications of polynomial norms to statistics and dynamical systems
    • …
    corecore