950 research outputs found

    LiSA: A Lightweight and Secure Authentication Mechanism for Smart Metering Infrastructure

    Full text link
    Smart metering infrastructure (SMI) is the core component of the smart grid (SG) which enables two-way communication between consumers and utility companies to control, monitor, and manage the energy consumption data. Despite their salient features, SMIs equipped with information and communication technology are associated with new threats due to their dependency on public communication networks. Therefore, the security of SMI communications raises the need for robust authentication and key agreement primitives that can satisfy the security requirements of the SG. Thus, in order to realize the aforementioned issues, this paper introduces a lightweight and secure authentication protocol, "LiSA", primarily to secure SMIs in SG setups. The protocol employs Elliptic Curve Cryptography at its core to provide various security features such as mutual authentication, anonymity, replay protection, session key security, and resistance against various attacks. Precisely, LiSA exploits the hardness of the Elliptic Curve Qu Vanstone (EVQV) certificate mechanism along with Elliptic Curve Diffie Hellman Problem (ECDHP) and Elliptic Curve Discrete Logarithm Problem (ECDLP). Additionally, LiSA is designed to provide the highest level of security relative to the existing schemes with least computational and communicational overheads. For instance, LiSA incurred barely 11.826 ms and 0.992 ms for executing different passes across the smart meter and the service providers. Further, it required a total of 544 bits for message transmission during each session.Comment: To appear in IEEE Globecom 201

    Anonymous and Efficient Message Authentication Scheme for Smart Grid

    Get PDF
    Smart grid has emerged as the next-generation electricity grid with power flow optimization and high power quality. Smart grid technologies have attracted the attention of industry and academia in the last few years. However, the tradeoff between security and efficiency remains a challenge in the practical deployment of the smart grid. Most recently, Li et al. proposed a lightweight message authentication scheme with user anonymity and claimed that their scheme is provably secure. But we found that their scheme fails to achieve mutual authentication and mitigate some typical attacks (e.g., impersonation attack, denial of service attack) in the smart grid environment. To address these drawbacks, we present a new message authentication scheme with reasonable efficiency. Security and performance analysis results show that the proposed scheme can satisfy the security and lightweight requirements of practical implementations and deployments of the smart grid

    A Secure and Fair Protocol that Addresses Weaknesses of the Nash Bargaining Solution in Nonlinear Negotiation

    Get PDF
    Negotiation with multiple interdependent issues is an important problem since much of real-world negotiation falls into this category. This paper examines the problem that, in such domains, agent utility functions are nonlinear, and thereby can create nonconvex Pareto frontiers. This in turn implies that the Nash Bargaining Solution, which has been viewed as the gold standard for identifying a unique optimal negotiation outcome, does not serve that role in nonlinear domains. In nonlinear domains, unlike linear ones, there can be multiple Nash Bargaining Solutions, and all can be sub-optimal with respect to social welfare and fairness. In this paper, we propose a novel negotiation protocol called SFMP (the Secure and Fair Mediator Protocol) that addresses this challenge, enabling secure multilateral negotiations with fair and pareto-optimal outcomes in nonlinear domains. The protocol works by (1) using nonlinear optimization, combined with a Multi-Party protocol, to find the Pareto front without revealing agent’s private utility information, and (2) selecting the agreement from the Pareto set that maximizes a fair division criterion we call approximated fairness. We demonstrate that SFMP is able to find agreements that maximize fairness and social welfare in nonlinear domains, and out-performs (in terms of outcomes and scalability) previously developed nonlinear negotiation protocols
    • …
    corecore